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Abstract

Due to technological advancements and the transfer of huge amounts of sensi-

tive data every day, biometric authentication has recently dominated the market.

In past access to certain data or services is typically gained via documents or

a password. However, these methods have proven unreliable over time. As an

alternative, biometric systems based on fingerprint, iris, voice, face recognition,

or a combination of these can be used. A facial recognition algorithm identifies

or verifies a person in a still image or video by using a database of stored facial

images. There have been several advances in face recognition over the last two

decades. Consequently, face recognition systems have now achieved satisfactory

performance under controlled conditions. The systems are, however, hampered by

varying illumination, pose and expression.

In this study, we investigate how different face recognition and verification al-

gorithms based on deep learning techniques perform under a variety of adverse

conditions, such as pose effects, aging effects, resolution effects, cross-spectral

matching and ethnicity effects. Five pre-trained deep learning models including

FaceNET, VGGFace2, SphereFace, CosFace and ArcFace are evaluated. ArcFace

trained using angular margins, can be seen clearly outperforming the counterparts

in all of the scenarios. In addition to that a novel technique for direct cross spec-

tral matching has also been proposed and have shown some promising results by

increasing the recognition accuracy upto 7% to 8%.



Contents

Author’s Declaration iv

Plagiarism Undertaking v

List of Publications vi

Acknowledgement vii

Abstract viii

List of Figures xii

List of Tables xiv

Abbreviations xv

Symbols xvi

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Identification vs Verification . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Performance Metric : ROC vs CMC Curve . . . . . . . . . . 3
1.3 Common Terminologies in Face Recognition . . . . . . . . . . . . . 4

1.3.1 High Resolution vs Low Resolution Face Recognition Problem 5
1.3.2 Gallery Set vs Probe Set . . . . . . . . . . . . . . . . . . . . 6
1.3.3 Open-Set vs Closed-Set Problem . . . . . . . . . . . . . . . 6

1.4 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Literature Review, Problem Statement & Research Contribution 9
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Face Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 MTCNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 RetinaFace . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Traditional Face Recognition Methods: A Review . . . . . . . . . . 15
2.4 Parts-based Face Recognition . . . . . . . . . . . . . . . . . . . . . 19

ix



x

2.4.1 Gabor features . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5 Face Recognition using Deep Learning . . . . . . . . . . . . . . . . 21

2.5.1 Public Large Scale Datasets for training FR Models . . . . . 23
2.6 Comparative Analysis of FR Algorithms: A Review . . . . . . . . . 24
2.7 Gap Analysis and Problem Statement . . . . . . . . . . . . . . . . . 24
2.8 Research Contribution . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Face Recognition Models under Test 32
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 FaceNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.1 Triplet Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 VGGFace2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.1 Squeeze-and-Excitation Networks (SENets) . . . . . . . . . . 35
3.4 SphereFace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.5 CosFace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.6 ArcFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 Evaluation Datasets and Protocols 52
4.1 Aging Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1.1 AgeDB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.1.1.1 Evaluation Protocol . . . . . . . . . . . . . . . . . 55

4.1.2 CALFW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.1.2.1 Evaluation Protocol . . . . . . . . . . . . . . . . . 57

4.2 Pose Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2.1 CPLFW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.1.1 Evaluation Protocol . . . . . . . . . . . . . . . . . 62
4.2.2 CFP-FP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.2.1 Evaluation Protocol . . . . . . . . . . . . . . . . . 63
4.3 Resolution Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3.1 SCface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3.1.1 Evaluation Protocol . . . . . . . . . . . . . . . . . 68

4.4 Cross Spectral Matching . . . . . . . . . . . . . . . . . . . . . . . . 68
4.4.1 TUFTS Database . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4.1.1 Evaluation Protocol . . . . . . . . . . . . . . . . . 72
4.5 Ethnicity Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.5.1 VMER (VGG-Face2 Mivia Ethnicity Recognition) . . . . . . 74
4.5.1.1 Evaluation Protocol . . . . . . . . . . . . . . . . . 76

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5 Results and Evaluation 77
5.1 Aging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2 Pose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.3 Resolution effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79



xi

5.4 Cross Spectral Recognition . . . . . . . . . . . . . . . . . . . . . . . 81
5.5 Ethnicity Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6 An Improved Approach for Cross Spectral Matching 84
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.2 Evaluation Methodology . . . . . . . . . . . . . . . . . . . . . . . . 85
6.3 Results and discussions . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.3.1 Results after Fine-Tuning . . . . . . . . . . . . . . . . . . . 88
6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7 Conclusion and Future Work 91
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Bibliography 93



List of Figures

1.1 9 Different images of same individual taken at different ages . . . . 2
1.2 An Example of Verification vs Identification . . . . . . . . . . . . . 3
1.3 An Example Illustrating ROC vs CMC Curve [2] . . . . . . . . . . 4
1.4 Coloumn (1-2) : High Resolution Gallery and Probe images from

MegaFace Database Coloumn (3-4) : Low Resolution Gallery and
Probe images from SCFace Database . . . . . . . . . . . . . . . . . 5

1.5 An Example of (a) Openset vs (b) Close-set Face Recognition . . . 7

2.1 Face detector in action on World’s Largest Selfie [7] . . . . . . . . . 11
2.2 Multi-Task Cascaded Convolutional Neural Network (MTCNN) pipeline

[14] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 RetinaFace model architecture [20] . . . . . . . . . . . . . . . . . . 14
2.4 A Generic Face Recognition System Pipeline . . . . . . . . . . . . . 15
2.5 (a) Facial Image sectioned into 4x4 local regions. (b) An illustration

of LBP histogram from each local area [46] . . . . . . . . . . . . . . 18
2.6 Method of extracting DCT coefficients using zig-zag scanning . . . . 20
2.7 Residual block as proposed in [21] . . . . . . . . . . . . . . . . . . . 23

3.1 FaceNet model architecture [73] . . . . . . . . . . . . . . . . . . . . 33
3.2 The Triplet Loss Learning [73] . . . . . . . . . . . . . . . . . . . . 34
3.3 VGGFace Architecture [87] . . . . . . . . . . . . . . . . . . . . . . . 35
3.4 A detailed diagram of the Squeeze and Excitation Network [111] . . 36
3.5 A Multilayer Perceptron (MLP) with bottleneck structure . . . . . 38
3.6 Comparison of various loss functions with angular loss [76] . . . . . 41
3.7 Different Architectures proposed by authors in SphereFace [76] . . . 42
3.8 Overview of CosFace Framework as presented by authors [79] . . . 43
3.9 Comparison of different decision Margins [79] . . . . . . . . . . . . . 44
3.10 A CNN is trained by using the ArcFace loss function [81] . . . . . . 48
3.11 Comparison of angular decision Margins[81] . . . . . . . . . . . . . 49

4.1 Scatter plot of Age distribution in AgeDB [125] . . . . . . . . . . . 54
4.2 Sample images in AgeDB [125] . . . . . . . . . . . . . . . . . . . . . 54
4.3 Image pairs with over 30 years of age gap in AgeDB [125] . . . . . . 55
4.4 N-fold cross validation topology . . . . . . . . . . . . . . . . . . . . 56
4.5 Image pairs with significant age gap in LFW and CALFW [126] . . 57
4.6 Image pairs with over 30 years of age gap in AgeDB [125] . . . . . . 58
4.7 Image pairs with different poses in LFW [65] and CPLFW [126] . . 60

xii



xiii

4.8 Pose variation among images present in CPLFW [126] . . . . . . . . 61
4.9 Comparison of pose of positive pairs of LFW and CPLFW dataset

[126] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.10 Frontal and Profile Images from CFP-FP database [135] . . . . . . 63
4.11 Database structure of CFP-FP database . . . . . . . . . . . . . . . 64
4.12 Low resolution face in a Surveillance video [136] . . . . . . . . . . . 65
4.13 Sample Images from SCface Database [136] . . . . . . . . . . . . . . 67
4.14 Heterogeneity among faces of same individual across different modal-

ities [139] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.15 Heterogeneity among faces of same individual across different modal-

ities [149] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.16 Images from different modalities present in TUFTS database [139] . 71
4.17 4 different ethnic groups present in VMER Database [156] . . . . . 75

5.1 Face Verification% of selected FR models on AgeDB-30 and CALFW 78
5.2 Trend of the Verification % on CPLFW and CFP-FP Database . . 80
5.3 Rank-1 Identification (%) on SCface Database . . . . . . . . . . . . 81
5.4 Rank-1 Identification (%) on VMER Database . . . . . . . . . . . 83

6.1 Depiction of Proposed Evaluation Methodology . . . . . . . . . . . 85
6.2 (a) RGB Gallery Images , (b) Corresponding Thermal Image, (c)

Corresponding Thermal Negative Image . . . . . . . . . . . . . . . 86
6.3 Trend of FR Accuracy % in Cross Spectral Matching . . . . . . . . 87
6.4 Trend of Face Identification % (Rank-1 by matching both frontal

gallery and probe images) . . . . . . . . . . . . . . . . . . . . . . . 89
6.5 Trend of Face Identification % (Rank-1 by matching both frontal

gallery vs 9 probe images) . . . . . . . . . . . . . . . . . . . . . . . 89



List of Tables

2.1 Public large-scale available face databases . . . . . . . . . . . . . . 23
2.2 Comparative Analysis of FR Algorithms done so far. . . . . . . . . 25

5.1 Verification % of FR Models based on Age datasets . . . . . . . . . 78
5.2 Verification % of FR Models on Pose datasets . . . . . . . . . . . . 79
5.3 Rank - 1 Identification % of FR Models on SCFace dataset . . . . . 80
5.4 Rank-1 Identification % of FR Models on VMER Database . . . . . 82

6.1 Identification Accuracy % of FR Models (Direct CS Matching) . . . 88

xiv



Abbreviations

CFR Cross-Spectral Face Recognition

CNN Convolutional Neural Network

DL Deep Learning

FR Face Recognition

HR High Resolution

LFW Labelled Faces in Wild

LR Low Resolution

LMCL Large Margin Cosine Loss

LDML Logistic discriminant metric learning

ML Machine Learning

MLP Multi-layer Perceptron

MTCNN Multi-task Cascaded Convolutional Networks

NSL Normalised Softmax Loss

SENet Squeeze and Excitation Network

SGD Stochastic Gradient Descent

SOM Self Organizing Map

YTF Youtube Faces

xv



Symbols

W Weight vector

x Feature vector

θ Angle between weight and feature vector

m margin penalty

p Posterior probability

f Activation function

C Total no. of classes

xvi



Chapter 1

Introduction

1.1 Background

In human beings, biometrics relate to physiological and behavioural characteristics

that are used to identify them automatically. During the last several decades, bio-

metric identification systems based on biometric techniques such as the face, iris,

fingerprint, and palm print have been admired in the industry. One of the most

vastly used biometric modalities is the human face, which is famous for its contact-

less acquisition, social acceptability, and suitability for usage in non-cooperative

circumstances.The field of machine-based face recognition has garnered a great

deal of interest in recent decades, particularly in the areas of biometrics, pattern

recognition, and computer vision research. In addition to primary and demanding

challenges in this domain, researchers are driven by everyday applications such as

those in financial services, forensics, authentication, and video surveillance, among

other areas. Now a days many commercial face recognition systems are in place,

and they are capable of meeting a wide range of requirements while also making

a positive contribution to society.

Every face, like a fingerprint, is distinctive, even when identical twins appearances

are compared [1]. This means that a facial recognition system’s accuracy should

be comparable to a fingerprint scanner. Finding a proper balance between a facial

recognition technique’s computing speed and accuracy is a big issue that requires

1
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more research. The system must be precise and accurate while being rapid enough

to be inconvenient.

Many commercial companies employ face recognition, such as Facebook, which

uses facial recognition to tag individuals in photos automatically. Selfie Pay is

a payment system developed by Mastercard that uses face recognition. Facial

recognition has also been used to take school attendance automatically. Special-

ized facial recognition systems for video surveillance are designed to identify the

presence of certain persons across a dispersed network of video cameras under un-

controlled capture situations. Thus, detecting the faces of target people in such

an environment is a difficult task since the look of faces fluctuates due to changes

in pose, size, lighting, occlusion, and blur, among other factors. This is a major

hurdle for modern computer systems when it comes to facial recognition.

Figure 1.1: 9 Different images of same individual taken at different ages

To illustrate how difficult this challenge might be, Figure 1.1 shows multiple images

of the same subject. Regardless if they all belong to the same individual, even a

human is unlikely to recognise them as such. Computational complexity is also a

factor to consider, given the increasing number of cameras and the processing time

of cutting-edge face identification, tracking, and matching algorithms. Meanwhile,

another field of research - artificial neural networks - was developing. This is

inspired by the human brain structure and has shown to be a game-changer for

several technical issues. Nowadays, one of the most frequently investigated ways
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for solving the face recognition issue is the deep neural network approach. Deep

Learning is at the frontier of what computers are capable of. It seems to perform

the best of all face recognition systems.

1.2 Identification vs Verification

Generally speaking, the word "facial recognition" relates to two basic scenarios:

one for verification or authentication and another for identity or recognition. One’s

biometric template is checked against the claimed identity solely in the context

of the verification task. However, in the context of the identification task, it is

matched against every template registered in the gallery as depicted in Figure 1.2.

Figure 1.2: An Example of Verification vs Identification

1.2.1 Performance Metric : ROC vs CMC Curve

It is possible to examine the outcomes of verification trials in terms of the Receiver

Operating Characteristic (ROC) Curve, which illustrates the Verification or True

Acceptance Rate (TAR) as a trade-off against the False Acceptance Rate (FAR)

(FAR). The Verification Rate is the proportion of a set of probe face images that

is correctly accepted. At the same time, the False Acceptance Rate reflects the

percentage of a group of probe face photos that is erroneously accepted. The
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Verification Rate (TAR) of 0.1 % is the most usually quoted single value from the

ROC curve.

Figure 1.3: An Example Illustrating ROC vs CMC Curve [2]

The efficiency of face recognition algorithms can be perceived using the Cumula-

tive Match Characteristic (CMC) curve. The Cumulative Match Curve (CMC)

is a performance indicator for 1:N identification systems that is used to compare

two sample facial images. ROC curves of verification systems, on the other hand,

are used to indicate the quality of a 1:1 matching systems. The Rank-1 recogni-

tion/identification rate or accuracy is the most usually quoted single metric from

the CMC curve since it is the most straightforward to calculate. Figure 1.3 shows

an example of both a ROC and a CMC curve.

1.3 Common Terminologies in Face Recognition

As the field of Face Recognition has developed recently, Some new terms are

introduced to gauge the performance of FR algorithms. Following are some of the

important terminologies one must understand in detail while working with face

recognition algorithms:

1. HR vs LR FR Problem

2. Gallery vs Probe Set
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3. Open vs Close Set

1.3.1 High Resolution vs Low Resolution Face Recognition

Problem

The literature lacks a clear definition of what constitutes a high-resolution image

and what defines a low-resolution image. Typically, images recorded with still

high-resolution cameras in constrained scenarios are referred to as high resolu-

tion images, and face recognition tasks involving both gallery and probe images

with a high resolution are classified as high resolution face recognition problems.

Numerous studies have been conducted on HR human face recognition, and state-

of-the-art algorithms now outperform humans in terms of recognition accuracy.

Figure 1.4: Coloumn (1-2) : High Resolution Gallery and Probe images from
MegaFace Database Coloumn (3-4) : Low Resolution Gallery and Probe images

from SCFace Database

Facial images that are relatively low in resolution i.e below 32x32 pixels, are rec-

ognized as low resolution images and are the possible cause of degradation in

the performance of face recognition algorithms. Challenges that specifically a low

resolution in facial images brings include degradation because of camera noise,

Occlusion, Scale variation, motion blur and out of focus blur. So, with the afore-

mentioned degradation’s in facial images it is a challenge to match a low resolution
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probe image with a high resolution gallery image. LR face recognition is an un-

der researched topic as compared to its counter part. Some of the most popular

approaches in LR face recognition involves resolution invariant facial models and

super-resolution based techniques. An Example of Set of facial images involved in

both high resolution and low resolution face recognition is depicted in Figure 1.4

1.3.2 Gallery Set vs Probe Set

In literature gallery set is the collection of high definition still frontal images

against whom the test images are matched. These images are the representative

of template images that would be enrolled in a real-world facial recognition system

for its deployment. Generally gallery images with neutral expression, frontal pose

and even illumination levels are considered as the best gallery image.

A probe set is a collection of probe/under-test images of unknown individuals

that need to be recognized or matched against the gallery or template image.For

example in real world surveillance scenarios, the stream of images via cameras

are captured and frame by frame facial images (probe images) are detected and

matched against the gallery set.

1.3.3 Open-Set vs Closed-Set Problem

Face recognition systems can be assessed in closed-set or open-set environments,

as seen in Figure 1.5 All testing identities are specified in the training set for the

closed-set approach. It is natural for testing facial image to be classified according

to their allotted labels. In these circumstances, Face verification is equal to perform

identification on a pair of facial images as seen in the left hand side of Figure 1.5.

As a result, closed set FR may be effectively treated as a classification problem

having separable features.

In Contrast the test images identities are often isolated from the training identity

in open-set protocols, which makes FR more demanding but close to practise. Due

to the impracticality of classifying faces according to their known identities in the



Introduction 7

Figure 1.5: An Example of (a) Openset vs (b) Close-set Face Recognition

training set, we must map facial features to a discriminative feature space. Face

identification in this case may be thought of as doing face verification between the

probe facial image and each identity in the gallery. Face identification in this case

may be thought of as doing face verification between the probe facial image and

each identity in the gallery .

1.4 Thesis Structure

This thesis is structured as Follows :

1. Chapter 1 includes the details about the background and history of biometric

systems with focus on FR systems and some commonly used terminologies

in FR systems.

2. Chapter 2 is about the literature review of the FR technologies including

some brief details about the face detection systems, parts based, holistic and
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hybrid approaches, insights of deep learning technology and FR methods

using this.

3. Chapter 3 includes the details about the FR models used for the evaluation.

4. Chapter 4 presents the details about the five scenarios i.e Age, Pose, Reso-

lution, Cross Spectral matching and the effect of ethnicity under which all

of the models are tested and the databases used for these scenarios.

5. Chapter 5 presents the results of the evaluation done under all of the selected

scenarios.

6. Chapter 6 presents the details of the novel approach utilized for improving

the Cross-Spectral Matching (RGB to Thermal).

7. Chapter 7 will be about the Conclusions drawn and the Future Work related

to this research.

1.5 Summary

The purpose of this chapter is to provide an overview of the background history,

the applications and need for biometrics in everyday life. It also includes the

explanation about some of the common terminologies i.e high resolution vs low

resolution, gallery set vs probe set and openset vs closeset face recognition problem,

used in face recognition and the performance metrics employed for the evaluation.

Additionally, it summarizes the general organization of the thesis.



Chapter 2

Literature Review, Problem

Statement & Research Contribution

2.1 Introduction

Since the 1970s, face recognition has become one of the most actively researched

problems in the fields of computer vision and biometrics. Deep neural networks

trained on very large datasets have recently surpassed conventional methods re-

lying on hand-crafted features as well as traditional machine learning techniques.

Face recognition may be structured as a classification challenge, which allows for

the use of a variety of machine learning techniques for the sake of developing a ro-

bust approach that infers the person’s identification automatically. Each machine

learning algorithm starts with a dataset and learns from it. Following the encod-

ing of each instance/sample (in this example, an image) with a feature vector, a

learning algorithm traverses the data and identifies patterns. Due to the intru-

sive aspects of posture, expression, and lighting, it is critical to choose a suitable

(rich, with many within-class variations) dataset if we desire for our system to

be resilient to these changes. Additionally, two additional difficulties are critical;

the first is determining which traits to utilize to represent a face in order to be

as resistant as feasible to all of these differences. The second is how to use the

selected representation to categories a fresh facial image. This chapter will begin

9
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with the details about face detection followed a review of the literature on face

recognition methods covering both classical ( holistic, feature-based, and hybrid)

and deep learning approaches are presented, as well as the details about the ba-

sic preprocessing processes that should be performed prior to feature extraction

and classification algorithms. Then we’ll look at several strategies that have been

extensively utilized and shown success.

2.2 Face Detection

Face detection is one of the important and critical applications of computer vi-

sion. Many methods for detecting multiple facial features have been introduced

in the last decade. Convolutional neural networks (CNN) and deep learning have,

however, recently shown great success. A face detector detects a human face in a

digital image based on its location and size. It depends on determining whether

any faces are present in a given image and resulting the bounding box of each

detected face. All facial analysis algorithms need to detect faces before they can

perform alignment, recognition or verification operations. Due to the dynamic

nature of human faces and their high degree of variability, it is difficult to detect

them.

A facial part can be detected by means of two methods i.e feature-based and

image-based techniques. Methods based on features attempt to find features that

are invariant across faces. The main idea is inspired by human vision system that

is capable of detecting faces in different poses and lighting conditions without

much effort. Therefore, it must possess certain properties or features regardless of

those variations in pose and lighting conditions. To detect the presence of a face,

many different algorithms have been proposed in the past. Although feature-based

approaches are easy to implement, there is a major problem with feature-based

algorithms in the sense that illumination, noise, and occlusion can severely corrupt

the image features. Additionally, the edges of features on faces can be weakened

when shadows are present, which renders perceptual grouping algorithms ineffec-

tive. Methods based on images are aimed at learning templates from examples.



Literature Review, Problem Statement & Research Contribution 11

Appearance based methods analyze images of "face" and "no-face" relying on ma-

chine learning and statistical techniques. These characteristics are either expressed

as distribution models or discriminant functions, which are then applied to the task

of detecting faces. The most common image-based approaches include CNNs [3],

SVMs [4], and Adaboosts [5]. Although several studies had been conducted before

2000 but prior to the groundbreaking research proposed by Viola and Jones [6],

there was no satisfactory FR method evolved. A deep learning based SOTA face

detector is can detect faces with upto 800 faces out of 1000 reported in the World’s

Largest Selfie [7] as seen in Figure 2.1

Figure 2.1: Face detector in action on World’s Largest Selfie [7]

The face detection field has made great progress since the innovative work by Viola

and Jones. Through training a detector using Haar features and AdaBoost, they

were able to detect faces more accurately, leading to the development of several

approaches over time.. Despite this, the detector has some critical drawbacks. For

example, the size of its features was relatively large. Additionally, it struggles to

handle faces in the wild or non-frontal faces. Traditional machine learning algo-

rithms were mostly used for training classifiers for detection based on handcrafted
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features extracted by domain experts in computer vision. It is often impossible to

find the effective features within the face using these methods, Separate optimiza-

tions are applied to every component, resulting in the inefficiency of the detection

pipeline.

In order to deal with the primary difficulty, researchers have devised further com-

plex features such as HOG [8], SIFT [9] and SURF [10]. An enhanced level of

detection has been achieved by merging multiple detectors that have been trained

separately for different views or poses. However, training and testing such mod-

els was often more time-consuming, with relatively limited results in terms of

improved detection performance.

A key advantage of deep learning methods over traditional computer vision ap-

proaches is that they avoid the handcrafted design process, and they have dom-

inated many well-known benchmarks like the ILSVRC [11]. In recent years, sci-

entist have applied one of the most popular generic object detectors, the Faster

R-CNN [12], with promising outcomes. Furthermore, joint trainings conducted

using CNN cascade, region proposal networks (RPNs), and Faster R-CNNs have

contributed to end-to-end optimization. With the combined use of hard negative

mining and ResNet, a faster R-CNN face detection algorithm was developed that

achieved significant improvements in recognition performance on benchmarks such

as FDDB [13]. Another popular approach is multi-task cascaded convolutional

neural network, or MTCNN for short.

2.2.1 MTCNN

MTCNN [14] employed a cascade structure as seen in Figure 2.2, three networks

are employed; first, an image is resized (called an image pyramid), next, a proposal

network (P-Net) proposes areas of interest, then a refine network (R-Net) refines

bounding boxes, and the output network (O-Net) provides landmarks for facial

identification. As opposed to being directly connected, the outputs of each stage

are fed into the previous stage. In this way, it is possible to perform additional pro-

cessing between stages as well; for example, a non-maximum suppression (NMS)
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[15] filter can be applied to candidate bounding boxes as they are provided by the

P-Net in the first stage before being introduced into the second stage R-Net.

Figure 2.2: Multi-Task Cascaded Convolutional Neural Network (MTCNN)
pipeline [14]

Implementing the MTCNN architecture is relatively complex. The architecture is

open source, so there are implementations of it that can be trained on new datasets

as well as pre-trained models you can use for face detection directly. We have used

the Caffe [16] official implementation of MTCNN in this research to detect faces

among different images utilized for the comparative analysis, It worked well for

all the scenarios except the thermal images, where it is unable to detect faces,

multiple hyperparameters for controlling the sensitivity of the detectors were also
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tuned, but this did not work. So we used RetinaFace detector for detecting the

faces in Thermal images.

2.2.2 RetinaFace

Like MTCNN, there are many othre top of the line face detectors like TinyFace

[17], SSH [18], PCN [19] and RetinaFace [20]. With RetineFace, you can perform

three different tasks, including face detection, 2D facial alignment, and 3D facial

reconstruction based on a single shot. Three different targets are solved keeping

only one thing in mind: that all points in the regressed data for all three tasks

should be on an image plane. Three main components make up the model including

Feature Pyramid Network, Context Head Module and Cascade Multi Task Loss

Figure 2.3: RetinaFace model architecture [20]

The Feature Pyramid Network produces five feature maps of varying scales based

on the input image. The first four feature maps in the Figure 2.3 are calculated

by ResNet [21] architecture, which was pre-trained on an Imagenet [22] dataset of

11k images. A convolution of 3x3 and stride 2 was applied to C5 to create the top

most feature map.

A deformation convolutional network (DCN) [23] is used instead of a normal 3x3

convolution in this module to enhance the context modelling capability. Cascade

regression is used along with multi-task loss to improve face localization. In the

first context module, regular anchors are used to predict the bounding box, and

the subsequent modules use regressed anchors for more precise predictions. The

first context head module matches ground truth boxes to anchors if their IoU is

more than 0.7 and background to anchors if it is less than 0.3. The second context

head module matches anchors to ground truth boxes if their IoU is more than
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0.5 and background to anchors if it is less than 0.4. Training examples are both

positive and negative using Online Hard Example Mining(OHEM) [24].

2.3 Traditional Face Recognition Methods: A Re-

view

A person’s distinctive facial features are not the first step in face identification,

but they are a useful starting point. To begin, all of the faces in an image must

be identified and extracted.

The first phase in a face recognition system is termed face detection as seen in

Figure 2.4

Figure 2.4: A Generic Face Recognition System Pipeline

Viola and Jones proposed a cascade of Adaboost classifiers in 2004 by extracting

Haar features, which quickly became a popular approach for face recognition that

could be done in real time. Their method involved the extraction of fast Haar fea-

tures from integral images, using cascade to rapidly remove non-face areas using

simple checks and the use of boosting for choosing out the most unique and im-

portant features. In the domain of face detection another effective method is the

Histogram of Oriented Gradients (HOG) technique . Concatenating the HOGs of

a given image patch’s sub regions creates its feature vector, these feature vectors

are then input into a linear SVM classification model, that decides whether an

image patch is facial or not. Because a HOG-SVM face detector produces fewer
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false positives than a Haar cascade because it is more accurate and quicker than

Haar cascades.

Local Binary Patterns (LBP) can be used in place of Haar features in conjunction

with cascade boosted classifiers [8]. As a result of deep learning, we are now able

to achieve ground breaking results for FR. YOLO (You only look once) [25] is one

of many deep convolutional neural networks (DNN) used for object identification,

also certain face detectors have been developed based on its design. Such detectors,

on the other hand, may be rather sluggish. Another step of the preprocessing

process that may increase the efficacy of face recognition is face alignment, which

implies that critical facial features like the mouth and eyes are centralized also

frequently in the same location on the image as each other. They function by

detecting certain facial characteristics, including the mouth, eye brows, nose and

jaw and then on the rotation, translation and scaling of those landmarks to produce

an idealised depiction of the face, as shown in Figure 2.4. In [26], it was suggested

to employ a distinctive facial landmark detector that effectively recognises 68 facial

feature points, otherwise known as landmarks and can therefore be used for face

alignment. After being provided with some training, facial image labelled with the

facial landmarks position and prior knowledge about the distances between them,

by training an ensemble of regression trees with gradient boosting ensemble only

on the pixel intensity, the landmark positions can be estimated. Gradient boosting

[27] is a practical application of the boosting concept to regression problems. An

alternative alignment method is presented [28], which is based on the idea of

congealing. This method aims to minimise the entropy of the empirical density

function field at every single pixel.

Following the geometric normalisation stage illumination is also normalised. Due

to the fact that facial images of the same individual seem significantly differently

under various lighting circumstances, it becomes necessary to adjust for these

differences and make the images more comparable. For example, histogram equal-

isation, which is used to increase contrast or intensity levels while also making the

histogram more uniform, and the normalising approach described by [29], which

is composed of three steps: first gamma correction second differences between
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Gaussian filters and finally the contrast equalisation. Following the detection and

extraction of faces, the process of normalised feature extraction is carried out.

Feature-based [30], [31], holistic [32], and hybrid [33] face recognition techniques

are the three types of face recognition algorithms that may be classified [34] de-

pending on the characteristics that they collect. Feature-based techniques identify

and extract facial landmarks for example the eyes, nose, and mouth and quantify

their geometrical features as well as the distances between them in order to im-

prove face recognition accuracy. These characteristics remain constant regardless

of changes in lighting conditions or pose. However, the identification of such land-

marks is not as accurate as it should be, lowering the efficacy of such systems.

Furthermore, they do not take into consideration facial texture, which might be

utilised to discriminate between people. Holistic approaches look at the facial

image as a complete unit and aims to extract valuable statistical insights from

the data that is provided by the input. In the early days of face recognition,

holistic approaches predominated, followed by hybrid techniques which included

local-based face descriptors into a single global feature vector. Eigenfaces [35],

Fisherfaces [36], Independent Component Analysis (ICA) [37], and kernel based

approaches [38]. They use pixel intensity characteristics as well as dimensionality-

reduction approaches for both Eigenfaces and Fisherfaces. Principal Component

Analysis (PCA) [39] defined as non-supervised dimensionality reduction method-

ology that keeps as much variability as possible while still correlating features. A

Linear Discriminant Analysis (LDA) [40] is a supervised approach to reducing di-

mensionality which uses Fisher’s discriminant ratio [41] to discover the projection

that best differentiates the classes.

In unconstrained situations, Eigenfaces is particularly sensitive to pose, expres-

sion, and light fluctuations; Fisherfaces, on the other hand, is more resilient to

pose and lighting variations since it additionally uses class label information. Face

recognition may be improved by using ICA for dimensionality reduction as done

by [42], that aims to capture a projection which not only makes features only

uncorrelated but also independent. It is shown in [43] that using the kernel ap-

proach in PCA and LDA transforms results in superior nonlinear transforms than

Eigenfaces, Fisherfaces, and ICA.
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At the same time, hybrid approaches take advantage of local block-based charac-

teristics, making them more resilient to pose and lighting issues. Binary Patterns

at the local level face descriptors include the histogram, Gabor-based features [44],

and two-dimensional DCT coefficients [45]. Because there are many micropatterns

in faces, an operator known as Local Binary Pattern (LBP) [46] provides a texture

descriptor which could be used for identifying faces. It was initially intended for

a fixed 4x4 scale, as shown in Figure 2.5. However, various expansions were sug-

gested in [47]. Concatenating histograms of such patterns from diverse locations

results in the formation of feature vectors.

Figure 2.5: (a) Facial Image sectioned into 4x4 local regions. (b) An illustra-
tion of LBP histogram from each local area [46]

Simple classifiers like the K-nearest neighbour classifier, KNNC [48] (or near-

est mean classifier, NMC [49]) could be used for classification. These classifiers

(primarily based on distance) may be used with Euclidean distance [50], [51],

(weighted) X2 distances, or cosine similarity [42] measures when histogram-based

features are used. Another more complicated approach is the Support Vector Ma-

chine (SVM) classifier [52]. Now, we will examine other hybrid approaches that

disobeys the pipeline depicted in Figure 2.4. In [53], low-level local features like

image intensity levels in RGB and HSV colour spaces, edge magnitudes and gradi-

ent orientations, were often used to train features and simile binary SVM classifiers

to calculate high-level visual features. Attribute classifiers identify characteristics

of faces i.e. gender, ethnicity, and age. In addition, these classifiers discover in-

describable characteristics by comparing various features of one face with a small
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selection of reference subjects. In order to compare two facial images, SVM clas-

sifiers are used to classify the outputs of images based upon attribute and simile

classifiers. A method similar to the simile classification system described in [53]

was presented in [54]. Primary disparities between [53] and [54] includes that [54]

employed a long series of small 1-to-1 classifiers rather than a sophisticated 1-to-

all classifiers in [53], and also that SIFT descriptors served as low-level features.

[55] offered two techniques based on metric learning regarding face recognition.

Hybrid approaches combine the benefits of holistic and feature-based approaches.

However the primary constraint is a lack of good features capable of extracting all

of the information required to identify a face.

Two more local-based face descriptors that have shown excellent results in the

domain of face recognition are Gabor-based features and 2D DCT coefficients

that will be discussed in the upcoming Section 2.4

2.4 Parts-based Face Recognition

2.4.1 Gabor features

In a wide variety of image processing applications, Gabor filters [56] have proven

effective, including image smoothing, texture analysis, edge detection, iris and fin-

gerprint identification, and face recognition. These have demonstrated to provide

the best results in the time (spatial) and frequency domains equally. Gabor filter

primarily is a Gaussian that has been modified by a complex exponential in two

dimensions given by :

G(x, y;λ, θ, ψ, σ, γ) = exp

(
−x

′2 + γ2y′2

2σ2

)
exp

(
i

(
2π
x′

λ
+ ψ

))
(2.1)

here

x′ = x cos θ+y sin θ, y′ = −x sin θ+y cos θ, θ represents the orientation

of the perpendicular to the parallel stripes of the Gabor function, σ is
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the standard deviation of the Gaussian envelope, γ is the spatial aspect

ratio that controls the ellipticity of the ellipses, λ is the wavelength of

the sinusoidal factor and ψ is the phase offset.

In [57], feature vectors of different orientations and frequencies were obtained

using a filterbank of odd-symmetric Gabor filters (the complex exponential in

formula (2.1) reduces to a sine), and classification was conducted using a simple

nearest mean classifier. The authors of [58] attempted to merge magnitude and

phase information from Gabor-filtered pictures in order to generate a more detailed

feature representation of the facial images than prior research efforts that focused

only on magnitude information. PCA was used to minimise the amount of features

before utilising SVM to do the classification job.

The two-dimensional Discrete Cosine Transforms (2D-DCT) were also employed in

the application of face recognition and is preferred in comparison with the Discrete

Fourier Transform (DFT) due to its exceptional compression qualities. When

paired with polynomial coefficients, often referred as deltas, derived from neighbor

blocks, Features of DCT are simpler to derive than the other Gabor feature format.

After detecting the face and possibly normalising it geometrically and illumination

(using a preprocessing approach such as Tan and Triggs normalisation or histogram

equalisation), feature extraction is done via block-based DCT. Then facial image is

then boken down into blocks of overlapping dimensions i.e MxN and feature vectors

are rediscovered in every section by retaining a limited number of low-frequency

DCT-II coefficients via a zig-zag approach, as illustrated in Figure 2.6.

Figure 2.6: Method of extracting DCT coefficients using zig-zag scanning
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2.5 Face Recognition using Deep Learning

The concept of deploying neural networks to identify faces is not new. In 1997, On

the basis of a probabilistic decision-based neural network (PBDNN) [59], a tech-

nique for detecting faces, locating eyes, and identifying them has been developed.

To limit the amount of hidden units and avoid overfitting, the face recognition

PDBNN was separated into one fully connected subnet per training subject. Two

PBDNNs were trained separately on intensity and edge characteristics and the

outputs of both is merged in order to provide a final classification decision.

One of another early approaches [60] proposes using a self-organizing map (SOM)

in conjunction with a CNN. SOM [61] is a sort of unsupervised neural network

method for transforming data into a lower-dimensional space while preserving its

input space’s topological characteristics (i.e. When inputs are closely spaced in

the original space, they are also closely spaced in the output space).

However, none of these two early approaches was trained end-to-end [59] used edge

features and [60] used SOM), and the proposed neural network architectures were

shallow. In [62], an end-to-end CNN for facial recognition was presented. This

technique made advantage of a siamese architecture that had been trained using a

contrastive loss function [63]. This algorithm provides a metric learning technique

which seeks to minimise the distance between pairs of feature vectors pertaining to

the same subject while maximizing the intra pair distance between feature vectors

in accordance to dissimilar subjects. This approach also employed a shallow CNN

architecture that was trained on relatively small datasets.

Because of the limited capability of the networks deployed and the limited amount

of data available, none of the approaches outlined above achieved ground-breaking

results. Not until these models were scaled up and trained on big datasets , Face-

book’s DeepFace [64], among the first techniques to use CNN for facial recognition,

it took use of more deep model, scored 97.35% accuracy on LFW [65] database, a

reduction in the error is more than 27% over prior state-of-the-art techniques. The

newly proposed CNN is trained on a database of 4.4 million facial images from

4,030 participants using softmax loss. This study makes two unique contributions,
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One is the development of a successful facial alignment system based on explicit

3D modelling of faces, and a CNN architecture with locally connected layers [66],

[67] that, unlike conventional convolutional layers, learns more distinctive features

from every small region of an image. Simultaneously, another approach DeepID

[68] reached at the comparable level of accuracy by training 60 unique CNNs on

patches with 10 regions and 3 scales. 160 bottleneck features from every patch and

its horizontally flipped counterpart were extracted in the testing phase, resulting

in a 19,200-D feature vector (160x2x60).

Just as is the case with [64], the suggested CNN design use of locally linked layers.

The verification result was achieved by training a joint Bayesian classifier [69] on

the resultant 19,200-D vectors generated by the CNNs.

In order to train the algorithm, 202,599 facial images of 10,177 celebrities were

used [68]. CNN architectures utilized for face recognition were influenced by those

that achieve the highest level of accuracy on the ImageNet Large Scale Visual

Recognition Challenge (ILSVRC). For instance, [70] employed VGG-16 architec-

ture [71], while [72] used a comparable but smaller network. [73] investigated two

distinct varieties of CNN architectures: VGG-style networks [71] and GoogleNet-

style [74] networks. While both types of networks achieved equivalent accuracy, the

GoogleNet-style networks had a factor of twenty times less parameters. Recently,

residual networks (ResNets) [21] have established themselves as the dominant ar-

chitecture for a variety of object identification tasks, including face recognition

[75], [76], [77], [78], [79], [80], [81]. The primary innovation of ResNets is the

addition of a building block that learns a residual mapping through a shortcut

connection, as seen in Figure 2.7.

Due to the fact that shortcut connections enhance the flow of information be-

tween layers, they enable the training of much deeper architectures. [81] conducted

a comprehensive examination of several CNN designs. The optimal trade-off be-

tween accuracy, inference time, and size of the model was found using a ResNet-100

[82] architecture backbone with a residual block identical with that of described

in [83].
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Figure 2.7: Residual block as proposed in [21]

2.5.1 Public Large Scale Datasets for training FR Models

Three major elements that influence the accuracy of CNN-based FR methods are

the training data, CNN architecture, and loss function utilized for the training. As

is the case with the majority of deep learning applications, extensive training sets

are required to avoid overfitting. The accuracy of CNNs trained for classification

increases with the number of samples per class.

It’s because when the CNN model is subjected to greater intra-class variance, it is

capable of learning more robust features. In face recognition, on the other hand,

one is concerned for retrieving the generalized features of individuals not included

in training set. Therefore, for face recognition a large number of individuals must

be included in the dataset, so the model can be exposed to more interclass variance.

Table 2.1: Public large-scale available face databases

Databases No. of images Subjects Images per subject
CelebFaces+ [84] 202,599 10,177 19.9
UMDFaces [85] 367,920 8,501 43.3

CASIA-WebFace [86] 494,414 10,575 46.8
VGGFace [70] 2.6M 2,622 1,000
VGGFace2 [87] 3.31M 9,131 362.6
MegaFace [88] 4.7M 672,057 7

MS-Celeb-1M [89] 10M 100,000 100
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2.6 Comparative Analysis of FR Algorithms: A

Review

Face Recognition has recently become a very popular research field because of

some promising results of machine learning and deep learning-based techniques.

Several algorithms have been proposed for face recognition. A few evaluation and

comparative studies have also been conducted in order to evaluate the performance

and effectiveness of FR systems. The following section and the Table 2.2 gives a

brief overview of the comparative studies conducted in the past, brief detail and

their shortcoming.

A total of 15 studies will be discussed along with their main contribution and

limitation. Major studies were found to be old school and classic, as they compared

only classical approaches, only few/limited studies were found to be related with

Deep Learning Face Recognition Algorithms.

2.7 Gap Analysis and Problem Statement

Following are some of the gaps that are identified from the reviewed literature

which relates to form a problem statement as follow:

• After a detailed study conducted in Section 2.60, it has been identified that

there is a lack of comprehensive, impartial and unbiased comparative analysis

of face recognition algorithms. Another important finding is that most of

the techniques compared in Section 2.60 are conventional and old school.

However a very limited amount of studies are seen involving state of the art

machine learning and deep learning models.

• DCCNs have achieved excellent face verification and identification results

on high resolution benchmark datasets. However their performance is still

effected when the images have wide variations among Age, Pose, Resolution

and Expression.
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Table 2.2: Comparative Analysis of FR Algorithms done so far.

Study Contribution/ Details Limitations

A Comparative Study of Baseline

Algorithms of Face Recognition by

Z. Mahmood et al [90].

Published Year : 2014

This study presents the comparison of two clas-

sical approaches used for FR i.e. PCA and Ad-

aBoost with LDA.

Two experiments involving pose and resolution

variations were performed using PIE database.

Major limitations of this study in-

cludes the lack of variety of different

experiments and the models used for

performing the comparison are also

limited.

Comparative analysis of advanced

Face Recognition Technique by

Kannan. et al. [91]

Published Year : 2014

This study focuses utilizes Fuzzy C-Means clus-

tering and parallel neural networks techniques to

evaluate the performance for FR applications.

Recognition accuracy and Inference time is also

calculated. A private database is used to evalu-

ate the performance of the selected techniques.

Only two classical approaches are se-

lected for the evaluation.

The database used for this study is

very limited in numbers and in the

variety of degradation present in the

images.

Comparative study of some FR Al-

gorithms by Lang et al. [92]

Published Year : 2008

2DPCA, SVD and fusion of both the classifiers

are used for the evaluation on ORL and Yale face

database.

Only facial expressions are used

with limited illumination variation.

Just 40 subjects are present in ORL

and 165 images are there in Yale face

database.
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Continuation of Table 2.2

Study Contribution/ Details Limitations

Comparative Study of Face Recog-

nition Classifier Algorithm by Zhan

et al. [93]

Published Year : 2015

This paper compares classical approaches as

PCA, FLDA, SVM and Bayes Classifier.

Recognition accuracy and Classification time are

reported. AT&T facial database is used for the

evaluation.

Only limited techniques and classi-

cal approaches for FR are tested.

The database used is very limited

i.e. 40 subjects and 400 images with

limited degree of variation among

faces.

A Multifaceted Independent Perfor-

mance Analysis of Facial Subspace

Recognition Algorithms by Usama

et al. [94]

Published Year : 2013

Six appearance based FR methods are used i.e.

PCA, 2DPCA, A2DPCA, (2D)2PCA, LPP and

2DLPP to perform the independent evaluation.

Three databases like FERET, ORL and YALE

are used in this evaluation with expression, illu-

mination and Ageing modalities.

Only classical approaches were eval-

uated in this study and the limited

amount of facial modalities were un-

der test.

A Comparative Study on Facial

Recognition Algorithms by Sanmoy

et al. [95]

Published Year : 2020

Facial Recognition accuracy of Eigen faces with

PCA, SVM, KNN, and CNN are selected for the

comparison of performance.

Private database with limited num-

ber of individuals and facial modal-

ities is used for the testing.
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Continuation of Table 2.2

Study Contribution/ Details Limitations

A Comparative Study of Facial

Recognition Techniques With fo-

cus on low computational power by

Timmy et al. [96]

Published Year : 2019

This study focuses on the evaluation of

FaceNET, Eigen Faces and Fisher Faces with

KNN.

The study reports accuracy, Recall, precision, F-

score and Fall out. Training time and prediction

time is also reported.

Limited portion of LFW database in

used in this study.

A deep learning model is compared

with the conventional technique of

FR, which is not a fair comparison.

Comparative analysis of FR algo-

rithms and investigation on the sig-

nificance of colour by Behnam et al.

[97]

Published Year : 2006

This study presents the comparison of PCA,

FLD, Laplacian faces and Gabor filters used in

the application of Face recognition.

CVL Database and Georgia Tech Face database

is used for the evaluation.

Selected amount of facial modali-

ties are used for the comparison.

Limited and classical FR techniques

were compared.

A Comparative Analysis of Face

Recognition Algorithms in Solving

the Problem of Visual Identification

by Gorbunov et al. [98]

Published Year : 2017

This study compares the recognition results of

Fisher Face, LBP and Eigen Face algorithms us-

ing facial images captured at three different dis-

tance i.e. 0.4m, 0.5m and 0.6m respectively.

A very brief study with insufficient

number of facial modalities and FR

models under test.



Literature
R
eview

,
P
roblem

Statem
ent

&
R
esearch

C
ontribution

28

Continuation of Table 2.2

Study Contribution/ Details Limitations

A Comparative Study of Face

Recognition Algorithms under Fa-

cial Expression and Illumination by

Ali. et al. [99]

Published Year : 2019

This study features LBPH, PCA and LDA for

the analysis. The database used is Yale Face

database and JAFFEE which contains 213 im-

ages of 10 individuals with 6 basic facial expres-

sions.

Yale database contains 165 images of 15 individ-

uals with varying illumination conditions.

Limited facial modalities were con-

sider to test. Only few and classi-

cal methods are used to perform the

analysis.

A Comparative Analysis of Face

Recognition Algorithms by Gagan

et al. [100]

Published Year : 2016

Authors compared only PCA and LDA tech-

niques. Only pose and illumination variations

are tested.

Limited facial modalities were con-

sider to test.

Only few and classical methods are

used to perform the analysis.

A comparative study on face recog-

nition techniques and neural net-

work by Meftah. et al. [101]

Published Year : 2012

PCA, MPCA and a Backpropagation Neural

Network are compared in this study. AT&T

database is used for the evaluation.

Experiments were conducted using

only the subset of dataset. Also

the database used contains limited

amount of facial modalities. i.e Illu-

mination and Facial Expression.
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Continuation of Table 2.2

Study Contribution/ Details Limitations

A Comparative Study of Deep

Learning Based Face Recognition

Algorithms for Video Under Adverse

Conditions by GALİP et al. [102]

Published Year : 2019

This Study performs the comparison of 3 Deep

learning models used for facial recognition i.e.

FaceNET, VGGFace2 and ARCFace.

UvA-NEMO database is used to perform the

evaluation, it contains HR frontal videos with

different expressions. The Author then applied

some noise to input video frames including Gaus-

sian Blur, Gaussian Noise, Salt and Pepper

Noise.

Only 3 Deep Learning models are

studied under limited amount of fa-

cial modalities.

Face Recognition Comparative

Analysis Using Different Machine

Learning Approaches by Nisar et

al. [103]

Published Year : 2021

Four machine learning based techniques were

considered for the evaluation including KNN,

LDA, SVM and PCA.

The database used is gathered by the Olivetti

Research Laboratory in Cambridge, UK and is

publically available for testing and benchmark-

ing the performance of FR algorithms

Limited facial modalities were con-

sider to test. Only few and classi-

cal methods are used to perform the

analysis.
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Continuation of Table 2.2

Study Contribution/ Details Limitations

Comparative Analysis of Face

Recognition Approaches: A Survey

by Ripal et al. [104]

Published Year : 2012

This study involves the scenario like Illumina-

tion, pose, expression, ageing, occlusion and

Low resolution for the evaluation of FR tech-

niques. A handful amount of models are used

for the testing including Gabor + ICA , Kernel

associated Memory Mode (KAMM), Kullback-

Leibler divergence (KLD)-based, local Gabor bi-

nary patterns (LGBP), Hybrid Colour and Fre-

quency Features (CFF), Gabor Image Represen-

tation (GIR) and 3D Morphable Model (3DMM)

. Comparative analysis of the graph show that

Gabor + ICA, Kernel associated Memory Model.

Their study also reports the computational effi-

ciency of each algorithm studied in their research

This study is old and does not com-

pare modern FR techniques based

on Machine Learning and Deep

Learning yielding state of the art re-

sults.

End of Table
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2.8 Research Contribution

With an aim of bridging the gap discussed in previous section, this research thesis

has made the following cardinal and novel contributions:

• A detailed and comprehensive comparative analysis is done using the five

top of the line deep learning models i.e FaceNET, VGGFace2, SphereFace,

CosFace and ArcFace yielding state of the art results on benchmark datasets

tested in five different facial images degradation i.e Ageing, Pose, Resolution,

Cross Spectral and Ethnicity. A total of 7 benchmark databases are used in

this regard.

• A novel cross spectral face recognition (CFR) technique is introduced, by

which deep learning models trained on RGB images are capable of recogniz-

ing the Thermal images without fine-tuning with acceptable results. However

the results became more reliable after fine tuning.

2.9 Summary

This chapter discusses the work done so far on face recognition technologies. There

is a brief introduction to the topic of face detection and then a discussion of the

methods applied from classical to deep learning including details of MTCNN [14]

and RetinaFace [20]. An overview of the most widely used FR methods i.e. parts-

based, feature-based, holistic, and hybrid techniques followed by an introduction

to deep learning technologies that can be applied to computer vision problems

and also deals with the most recently used deep face recognition methods. A

detailed review of the comparisons of FR systems done so far was also explained

in this Chapter, followed by the Problem statement/Gap Analysis and Research

Contribution of this Thesis.



Chapter 3

Face Recognition Models under Test

3.1 Introduction

In order to compare and test the performance of face recognition algorithms, five

state-of-the-art deep learning based FR models were brought under test, with the

latest model being published in 2021 and bottom most in 2015. In this Chapter

we will discuss each one in detail.

3.2 FaceNet

In 2015, Google researchers developed a FR system called FaceNet [73]. It exhibit

excellent performance on a variety of benchmark FR databases i.e LFW [65] and

YTF [105]. They developed a technique that utilises DL backbone models like ZF-

Net [106] and Inception [107] to produce more accurate representations of facial

images. Then, as a loss function, it employed a technique called triplet loss to

train this architecture.

FaceNet’s architecture is based on end-to-end learning as depicted in Figure 3.1. Its

underlying architecture is either ZF-Net or Inception. Additionally, it incorporates

many 1x1 convolution in order to reduce number of parameters.

32
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Figure 3.1: FaceNet model architecture [73]

These DL based models generate embedding(unique representation) of a facial

image f(x) that has been L2 normalised. The loss function is then used to gen-

erate these embeddings. The primary objective of loss function is to minimise a

distance (i.e euclidean or square) in-between two facial images embeddings that

are identical in terms of image condition and facial posture, while increasing the

distance (squared) between images of different identities.In this regard the Triplet

Loss [108] came into being with the objective of imposing a margin in between

faces representing two different individuals.

3.2.1 Triplet Loss

Embedding generated by the DL model is given as f(x), for instance, x ∈ R.

This embedding is actually of a vector of shape 128-dimensional that has been

normalised so that :

∥f(x)∥22 = 1

The objective is to make sure that the distance between anchor image and the

positive image (image of the same individual) is lesser as compared to the acho a

negative image(image of another person) as depicted in Figure 3.2, so that:

∥f (xai )− f (xpi )∥
2
2 + α < ∥f (xai )− f (xni )∥

2
2 (3.1)

∀ (f (xai ) , f (x
p
i ) , f (x

n
i )) ∈ ⊤ (3.2)

Here α represents a margin term, enforced to differentiate positive and negative

pairs and ⊤ are the image space. Hence the loss function will be represented as
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following :

L =
N∑
i

[
∥f (xai )− f (xpi )∥

2
2 − ∥f (xai )− f (xni )∥

2
2 + α

]
(3.3)

Figure 3.2: The Triplet Loss Learning [73]

The Equation 3.6 would not be helpful if triplets easily satisfy it, so it is vital to

have triplets that violate it. This means for given xai triplets should be selected as

∥f (xai )− f (xpi )∥
2
2 is maximum and ∥f (xai )− f (xni )∥

2
2 is minimum. The generation

of triplets using the entire training set is computationally expensive. Two methods

can be employed to do so:

• On each step, compute the min & max for subset of a data based on the

previous checkpoints.

• Selecting hard positive (xpi ) and hard negative (xpi ) by using min & max on

a mini batch.

Here authors claims to achieves the classification accuracy of 98.87%( 0.15% of

standard error) on unrestricted protocol of LFW database. However, the model

used in this research is provided by David Sandberg on GitHub [109] with In-

ception ResNet v1 as backbone. It is trained in VGGFace2 large scale database

consisting of 3.3M facial images of 9000 different classes. This model yields the

accuracy of 99.65% on LFW dataset.

3.3 VGGFace2

VGGFace2 [87] itself is a dataset proposed by the members of Visual Geometry

Group at Oxford University to train sophisticated and modern the CNN’s used for
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face recognition. This dataset comprise of 3.31 million images from 9131 people,

with average of 362.6 images per subject. All of the images were retrieved from

Google Image Search and vary significantly in terms of pose, age, lighting, ethnic

origin, and profession (i.e. actors, athletes, politicians). Entire database is divided

into a training set (consisting of 8631 unique identities) and a test set (including

500 identities). Name VGGFace2, on the other hand, has become associated with

the pre-trained face recognition models trained on this dataset. The legacy of

VGGFace Models dates back in 2015 [110], when the first model was presented

with famous VGG-16 architecture as backbone, later on the model is trained using

ResNet-50 architecture and SENet [111] architecture in 2017.

Originally VGGFace architecture is made up of 13 convolutional layers, they each

have its own unique hyper parameter values. Each convolutional layer has 15

rectified linear units (ReLUs) [112], along with maxpooling layers. The third and

fourth layers on top of this are the fully connected (FC) layers, designated FC6

and FC7, respectively. FC8 has 2622 channels, while FC6 and FC7 have 4096

channels each as seen in Figure 3.3. The final layer is a softmax layer that is used

for classification of images in accordance with their class.

Figure 3.3: VGGFace Architecture [87]

The model utilized for this research is pre-trained using MS1M [113] database

and later finetuning was done using VGGFace2 database with SENet architecture.

Next section will discuss the SENet architecture in detail.

3.3.1 Squeeze-and-Excitation Networks (SENets)

Squeeze-and-Excitation Networks (SENets) [111] provide a low-cost building block

for CNNs that enhances interdependence among channels. They were employed

in last year’s ImageNet competition and contributed to a 25% improvement over
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previous year’s outcome. Apart from providing a significant performance improve-

ment, they can be simply integrated into existing architectures.

The Convolutional Neural Network (CNN) extracts hierarchical information from

the images using the convolution operator. The bottom layer detects lines, edges,

and other discrete objects, but the top layer detects whole objects such as a human

face, cat, or dog. All of this is accomplished by integrating spatial and channel-

specific information at each layer. Convolution builds a feature map with a variable

number of channels, where each channel is treated equally. This implies that each

channel is equally significant, which may not be the ideal approach. The Squeeze

and Excitation attention technique adds a scaling parameter to each channel. The

Squeeze and Excitation functions essentially as a content-aware technique that

adaptively reweights each channel that can be seen in Figure 3.4.

Figure 3.4: A detailed diagram of the Squeeze and Excitation Network [111]

The squeeze function is mostly used to obtain global information from the feature

map’s channels. The Convolutional layer outputs the feature map, which is a

B ×H ×W × C dimensional 4D tensor.

Here:
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• B: denotes the batch size.

• H: denotes the elevation of each feature map.

• W: Width of each feature map.

• C: represents the channel count in the feature map.

As we know, convolution is a local operation, as it only sees a subset of the input

image. As a result, it is critical to have a holistic knowledge of the feature map.

As here we are coping with a four-dimensional tensor that has a large number of

parameters means that one must deal with numerous parameters when the number

of channels in a CNN rises dramatically. As a result, a method for reducing

each feature channel to a single numeric value is required. This decomposition

would result in a reduction in the number of parameters, which would result in a

reduction in computing complexity. Pooling techniques are employed in modern

convolutional neural networks to minimise the spatial dimensions of the feature

maps. The two most often utilised pooling operations are as follows:

• Max Pooling: This operation extracts the maximum pixel value from a spec-

ified window.

• Average Pooling: This technique calculates the average pixel values for a

specified timeframe.

The author conducts a series of experiments to check the performance of two

different pooling operations: Global Max Pooling (GMP) and Global Average

Pooling (GAP). Global Average Pooling (GAP) performs better than the Global

Max Pooling (GMP). Thus in the squeeze operation, the Global Average Pooling

(GAP) is used to reduce the B ×H ×W × C feature map to B × 1× 1× C.

There are now only four dimensions on the feature map i.e B×1×1×C, effectively

to a single vector for each channel of size H ×W . A fully connected MLP having

a bottlenecked shape is then employed for excitation operation. Each feature map

channel is scaled adaptively using weights generated from the MLP.
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Figure 3.5: A Multilayer Perceptron (MLP) with bottleneck structure

The MLP as seen in Figure 3.5 is composed of three layers, the first one is tasked to

minimise features by a factor of r. The dimensions of the feature maps comprised

inside the layers are as follows: The input is of the form B × 1 × 1, which is

reduced to the format B. Thus, the input layer contains C neurons. The hidden

layer significantly lowers the number of neurons in the network by a factor of r.

Thus, the hidden layer contains C/r neurons. Finally, the number of neurons

in the output layer was increased to C. In general, the MLP accepts an input

dimension of B × 1× 1× C and returns an output dimension of the same size.

The "excited" tensor is sent through the excitation procedure then sigmoid acti-

vation function is applied. It maps tensor values between 0 and 1 to tensor values.

The output of the sigmoid activation function is then multiplied by the input fea-

ture map element by element. If the value is close to 0, the channel is considered

less important, and thus the values of the feature channel are reduced; if the value

is close to 1, the channel is considered important. To further analyse the scal-

ing process, the author conducted an ablation study using non-linear activation

functions in place of the sigmoid. Multiplication (element-wise) between the orig-

inal feature map and output of sigmoid activation function takes place during the

scaling process. The sigmoid activation function returns a value between 0 and 1,
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which is then multiplied by each channel. Therefore, consider multiplying a chan-

nel by a number close to 0. It will decrease the pixel values in that feature map,

as these pixel values are considered irrelevant by the SE-block. When the channel

is multiplied by a value close to 1, the pixel values are not suppressed nearly as

much as in the prior situation. As a result, we can verify that the Squeeze and

Excitation Networks effectively scale the information contained in each channel.

It minimises irrelevant channel information while leaving the important channels

mostly unchanged. Thus, at the end of the process, the feature map contains

only the necessary information, thereby increasing the network’s representational

ability.

3.4 SphereFace

SphereFace [76] is joint effort of the researchers of Georgia Institute of Technol-

ogy, Carnegie Mellon University and Sun Yat-Sen University in 2018. By not

depending on a euclidean margin, the research greatly separates itself from earlier

explored losses by employing the angular margin. This is seen to be extremely

successful in tasks requiring facial recognition. The loss name provides informa-

tion on how the features are transformed during the computation of the loss. The

features are projected onto a manifold of hyperspheres.

SphereFace originates from the softmax [114] loss which is mostly employed in

general classification tasks. It is defined as:

LS = − 1

N

N∑
i=1

log
eW

T
yi
xi+byi∑n

j−1 e
WT

j xi+bj
(3.4)

“where xi ∈ Rd denotes the feature vector of the i-th sample belonging to the yi-th

class. Wj ∈ Rd is the j-th column of the weight matrix W ∈ Rd and b corresponds

to the bias term. N is batch size and n denoted corresponding class”

There is one significant disadvantage of softmax loss. It has no effect on classes

cluster compactness. In other words, it does not ensure that samples within a
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category are comparable. As a result, the learnt features are not sufficiently dis-

criminative for the open-set face recognition task. Another concern is the output

weight matrix’s dimension, which rises linearly in size as the number of identities

in the training set increases. As a result, softmax loss is unsuitable for large-

scale implementation. To derive SphereFace from softmax, we first incorporate

the angle into the softmax equation using the dot product definition:

(a · b = ∥a∥∥b∥ cos θ)

LS = − 1

N

N∑
i=1

log
eW

T
yi
xi+byi∑n

j−1 e
WT

j xi+bj

= − 1

N

N∑
i=1

log
e∥Wyi∥∥xi∥ cos(θyi,i)+byi∑n
j−1 e

∥Wj∥∥xi∥ cos(θj,i)+bj

(3.5)

“where θj,i is the angle between vector Wj and xi. The remaining

parameters are same as to those in the Softmax Equation 3.4. Next

we normalize ∥Wj∥ = 1, ∀j and set the bias term to 0.” The modified

loss function can be written as :

Lmodified = − 1

N

N∑
i=1

log
e∥xi∥ cos(θyi,i)∑n
j−1 e

∥xi∥ cos(θj,i)
(3.6)

While it is feasible to train features using the modified loss function, but the

resulting feature set would not be sufficiently discriminative. The researchers

addressed this issue by incorporating an angular margin as represented in Equation

3.7:

Lang = − 1

N

N∑
i=1

log
e∥xi∥ cos(mθyi,i)

e∥xi∥ cos(mθyi,i) +
∑

j ̸=yi
e∥xi∥ cos(θj,i)

(3.7)

where θyi,i lies in
[
0, π

m

]
. The decision boundary for a binary case is defined by:

cosmθ1 = cos θ2
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“where θi is the angle between the feature and weight of class i. To make the loss in

Equation 3.6 optimizable for CNNs the definition range of cos (θyi , i) is expanded.

This is achieved by replacing the cosine term with monotonically decreasing angle

function Ψ(θyi , i) resulting in Equation 3.8:”

Lang = − 1

N

N∑
i=1

log
e∥xi∥Ψ(mθyi,i)

e∥xi∥Ψ(mθyi,i) +
∑

j ̸=yi
e∥xi∥Ψ(θj,i)

(3.8)

The angle function has the following definition:

Ψ(θyi,i) = (−1)k cos (θyi,i)− 2k (3.9)

where k ∈ [0,m1]. The parameter m ≥ 1 gives us control over the size of angular

margin.

Figure 3.6: Comparison of various loss functions with angular loss [76]

The Figure 3.6 represents a geometry interpretection of Euclidean margin loss (e.g

contrasive loss, triplet loss etc), modified and angular softmax loss. The first row

represents a 2D feature constraint, second row represents a 3D feature constraint.

The orange and green regions represents the discriminative constraints for class 1

and class 2.

Figure 3.7, illustrate the CNN architectures with varying convolutional layers.

Units of convolution containing more than one layer are labeled as Conv1.x,
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Figure 3.7: Different Architectures proposed by authors in SphereFace [76]

Conv2.x, and Conv3.x, while residual units are shown in double-column brack-

ets. i.e. 4 cascaded convolution layers with 64 filters of size 3×3 is denoted by

[3×3, 64]×4, S2 represents a stride of 2.

The SphereFace model utilized in this research is pretrained on CASIA-Webface

[86] database which contains 494,414 facial images belonging to 10,575 different

individuals with standard 64-layer CNN as backbone, presenting a verfication ac-

curacy of 99.2% on LFW benchmark.

3.5 CosFace

The Large Margin Cosine Loss (LMCL) [79], also known as CosFace is another loss

using margin with means of improving discrimination of softmax, restructures the

traditional softmax loss by making weight as well as feature vectors L2 normalised

to eliminate radial variations. Further maximising the decision margin in the

angular space is then achieved by introducing m as a cosine margin term. As an

outcome, the lowest intra-class margin and the highest inter-class margin possible

for reliable face verification is obtained.

As depicted in Figure 3.8, During the training stage, the discriminating facial

features between various classes will be learnt with a large margin. During the
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Figure 3.8: Overview of CosFace Framework as presented by authors [79]

testing stage, test data is fed to CosFace model, which extracts facial features and

then utilizes them to calculate the cosine similarity aiding face verification and

identification. High separability among classes can be visualized in the Figure 3.8.

By maximising posterior probability of a true class, softmax loss splits features of

several classes. Softmax loss may be expressed as in Equation 3.4 inputs a feature

vector x and corresponding label y:

Ls =
1

N

N∑
i=1

− log pi =
1

N

N∑
i=1

− log
efyi∑C
j=1 e

fj
(3.10)

here p denoted posterior probability that x is categorised correctly. N represents

total number of training samples, whereas C denotes the total classes. f is the

activation fucntion used for fully connected layer with the weight vector as W .

Keeping bias equal to zero for simplicity’s sake. As a result, f is defined as

follows:

fj = W T
j x = ∥Wj∥ ∥x∥ cos θj (3.11)

where θ denotes the angle created by W and x. According to the formula, a

posterior probability is determined by both the norm and angle of vectors. In

order to ensure proper feature learning, ∥W∥ must be constant, which is why

we set ∥W∥ = 1 using L2 normalisation. As we compare the two face feature

vectors using cosine similarity during the testing, we can conclude that the feature



Face Recognition Models under Test 44

vector’s norm has no effect on the scoring function. Thus, we may set ∥x∥ = s

during training. As a result, the posterior probability is only determined by the

cosine of the angle, and so the loss may be expressed as:

Lns =
1

N

∑
i

− log
es cos(θyi,i)∑
j e

s cos(θj,i)
(3.12)

In this case, we set the ∥x∥ to s, so the model only learns features that can be

separated in the angular space (NSL). However, NSL (Normalized Version of Soft-

max Loss) is insufficient since it only focuses on proper classification. To resolve

the issue, the loss function is modified to include a cosine margin. Considering an

example of binary classification, Hence LMCL is formulated as :

Llmc =
1

N

∑
i

− log
es(cos(θyi,i)−m)

es(cos(θyi,i)−m) +
∑

j ̸=yi
es cos(θj,i)

(3.13)

Here N represents the number of training samples, xi is a feature vector with label

yi, Wj is weight vector and θj represents the angle among Wj and xi.

Figure 3.9: Comparison of different decision Margins [79]

As illustrated in Figure 3.9, different decision margins are used for binary-class

scenarios with different loss functions. Grey areas represent decision margins and

dashed lines are decision boundaries.

The softmax loss creates a decision boundary as ∥W1 × cos(θ1)∥ = ∥W2 × cos(θ2)∥

Because the decision boundary is dependent on both the magnitude and angle of

the weight vectors, the decision margin overlaps in the cosine space. The weight

vector is normalised to have magnitude 1 by NSL, and hence the decision boundary
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is defined as cos(θ1) = cos(θ2). As seen in the Figure 3.9, by reducing radial vari-

ation, it is capable of completely classifying samples with margin = 0. However,

it is not resistant to noise.

A-Softmax (Angular softmax) minimizes softmax loss by inserting an additional

margin, resulting in the following decision boundary :

C1 : cos (mθ1) ≥ cos (θ2)

C2 : cos (mθ2) ≥ cos (θ1)
(3.14)

The third plot in Figure 3.9 illustrates the decision area, with the grey region

representing the decision margin. Because CosFace’s decision boundary is not

specified across angular space, the loss is easier to optimise than SphereFace’s.

Because of the non-monotonic property of cosine function, optimization in angular

space is more complex. Another improvement over SphereFace is that not only the

weight vector Wj, but also the feature vectors xi, are normalised. As a result of

the emphasis on the angle during training, the intraclass variability of the learnt

features is significantly smaller. The decision margin was specified in a cosine-

space rather than anglular-space by LMCL as follows:

C1 : cos (θ1) ≥ cos (θ2) +m

C2 : cos (θ2) ≥ cos (θ1) +m
(3.15)

In order to perform the large-margin classification cos (θ1) is maximized while

cos (θ2) being minimized for C1 (similarly for C2) . It is possible to observe a clear

margin in the produced distribution of the cosine of angle in Figure 3.9, which is

the decision boundary of LMCL in the cosine space. This shows that LMCL has a

greater degree of robustness than NSL. Both the weight vector and feature vector

are normalised to obtain the formulation of cosine loss and to eliminate radial

variation. As an outcome, feature vectors are dispersed on the hypersphere, with

the radius controlled by the scaling parameter s. Without feature normalisation,

the original softmax loss automatically learns both the Euclidean norm (L2 -norm)

of feature vectors and the angle’s cosine value. The L2 -norm is adaptively learnt
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with the goal of reducing the total loss, which results in the relatively weak cosine

constraint. On the other hand, LMCL demands that the whole collection of feature

vectors to have the same L2 -norm, such that learning is based exclusively on cosine

values. On the hypersphere’s surface, feature vectors belonging to the same class

are grouped together, while those belonging to other classes are separated. The

total number of classes as C, given the normalised learned feature vector x and the

unit weight vector W . Assume that the learnt feature vectors each reside on the

hypersphere’s surface and are centred on the corresponding weight vector. Let PW

be the predicted lowest posterior probability of the class centre (i.e., W ), which

serves as the lower bound for s :

s ≥ C − 1

C
log

(C − 1)PW

1− PW

(3.16)

On the basis of this constraint, we may conclude that s must be constantly in-

creased If we anticipate that P (w) is optimal for classifying a set of given classes.

The ideal s must be larger in order to accommodate more classes, as the growing

number of classes makes classification more difficult. Thus, for features with a

low intra-class distance, but a high inter-class distance, a hypersphere with a large

radius s is required.

Choosing the ideal value of m may result in more promising learning of highly

discriminative face features. Bigger is a better choice for m ∈
[
0, C

C−1

)
as it

will improve learning of highly discriminative features. As all feature vectors are

centred on the associated class’s weight vector. Indeed, Too large m can causes

the model failure to converge, since the cosine constraint becomes more stringent

and difficult to satisfy (i.e. cos θ1 −m > cos θ2 or cos θ2 −m > cos θ1 for binary

classification). Additionally, the cosine constraint with an excessively high m

makes the training process more vulnerable to noisy input. At some point, due to

its inability to converge, increasing m value begins to degrade overall performance.

The CosFace model used for this research is pre-trained on CASIA WebFace

Database [86] with sphere 64 layer CNN as backbone and reports the accuracy

of 99.23% on LFW Database.
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3.6 ArcFACE

ArcFace [81] is a freely released research that produced record breaking results

on LFW database in 2018. The majority of the concepts underlying ArcFace

were previously discussed in the Section 3.4 SphereFace and Section 3.5 CosFace.

These concepts are normalisation of class weights and feature vectors, as well as

the addition of margin term m in the loss function equation. These two concepts

reduce intra-class variance in angular space, resulting in a model with enhanced

discriminative ability for facial recognition tasks.

There are two primary lines of research for training CNNs for face recognition: one

uses softmax classifiers for training a multiple class classifier, as well as the other

uses embeddings like the triplet loss to learn the embeddings. Each, however, has

its disadvantages. Softmax loss requires more parameters as the classes increase in

recognition problem. Similarly, the number of face triplets grows logically with the

size of the dataset, resulting in a large number of iterations for the triplet loss. In

ArcFace [81], by introducing an additive angular margin loss, the face recognition

model’s discriminative ability can be further improved and the training process

is stabilised. The angle between the existing feature and the desired weight is

calculated using the arc-cosine function. ArcFace optimises the geodesic distance

margin directly due to the exact correspondence between angle and arc in the nor-

malised hypersphere (which contains the face features). ArcFace, like SphereFace

and CosFace, originates in the softmax loss Equation 3.4. The difference between

the original and the upgraded version is five steps. The first four are identical to

their counterparts in CosFace:

1. fix the bias bj = 0.

2. transform the logit using the dot product definitionW T
j xi = ∥Wj∥ ∥xj∥ cos θj

( θ is the angle between the weight Wj and the feature xi ).

3. fix the individual weights ∥Wj∥ = 1 by l2 normalization.

4. do the same for feature xi and re-scale it to a predetermined feature scale s.
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The two normalization steps make the prediction depend only on the angle θ. The

embeddings are scattered on the hypersphere having radius s.

At start the loss function equation will be given as (Softmax):

L1 = − 1

N

N∑
i=1

log
eW

T
yi
xi+byi∑n

j=1 e
WT

j xi+bj
(3.17)

where x indicates the i − th sample’s feature vector and W and b signify the

weight and bias, respectively. There is no explicit optimization in Softmax loss for

feature embedding to ensure that samples of the same class are more similar, while

those of different classes have a great degree of diversity, Due to large intra-class

appearance variations (i.e age gap and pose variation), such a performance gap

has been observed for deep face recognition.

Figure 3.10: A CNN is trained by using the ArcFace loss function [81]

For simplicity, we set the bias to zero in the softmax loss and then transform the

logit functions as follows:

W T
j xi = ∥Wj∥ ∥xi∥ cos θj (3.18)

where θ is the angle formed by the weight W and the feature x. By applying

the L2 normalization, the weight is normalised to one. Also, the feature is L2

normalised and rescaled to s.

The normalizing procedures enable predictions dependent only on the angle (θ).

The learnt embedding is distributed in the following order on a hypersphere of

radius s:
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L2 = − 1

N

N∑
i=1

log
es cos θyi

es cos θyi +
∑n

j=1,j ̸=yi
es cos θj

(3.19)

Between weight and feature, an additive angular margin penalty m is introduced

to increase intra-class compactness and inter-class discrepancy. Due to the fact

that the suggested additive angular margin penalty equals the geodesic distance

margin penalty in the normalised hypersphere, it is referred to as ArcFace. As a

result, the final loss function is as follows:

L3 = − 1

N

N∑
i=1

log
es(cos(θyi+m))

es(cos(θyi+m)) +
∑n

j=1,j ̸=yi
es cos θj

(3.20)

To train the ARCFace model as proposed by authors in Figure 3.10 following

algorithm is used:

1. After feature xi and weight W normalisation, we get the cos θj (logit) for

each class as W T
j xi

2. We calculate the arccos θyi and get the angle between the feature xi and the

ground truth weight Wyi .

3. We add an angular margin penalty m on the target (ground truth) angle θyi .

4. We calculate cos (θyi +m) and multiply all logits by the feature scale s.

5. As a result, the logits then contribute to the CE loss by applying softmax.

Figure 3.11: Comparison of angular decision Margins[81]
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Figure 3.11 shows a comparison of classification boundaries in the case of binary

classification. ArcFace throughout maintains a constant linear angular margin.

SphereFace and CosFace, on the other hand, presents a nonlinear angular margin.

The authors then used a set of parameters to compare various network architec-

tures. Each of these networks have a similar architecture.

All of these models are trained on 112x112 input images in RGB domain after

cropping, resizing, and normalising images. The first variation is in the output

size, which may be set to 7x7 (denoted by a L at the network’s commencement) or

3x3. Then, five distinct embedding options are evaluated. Following that, two dis-

tinct versions of the ResNet network are evaluated. The second form is generated

by using an enhanced version of the residual units termed ’IR’ (for improved resid-

ual). Finally, they examine a variety of alternative network topologies, including

MobileNet [115], Inception-ResNet-V2 [116], DenseNet [117], Squeeze and excita-

tion networks [111], and Dual Path Network [118]. According to their findings,

the best result is obtained by utilising a ResNet with the L output, a BN-dropout-

FC-BN layer after the convolution layer as an embedding setup, and IR residual

units. Authors also specify that the second class of losses are superior because they

include "discriminative constraints on a hypersphere manifold, which intrinsically

fits the assumption that the human face is on a manifold." In comparison to its

predecessors, the authors state that ArcFace, or additive angular margin, has a

"superior geometrical interpretation" that enables the acquisition of "more dis-

criminative deep features." The ARCFace pretrained model used in this research

posses a backbone architecture of ResNet-100 [119], trained on MS1Mv2 Dataset

[113] and using Apache MXNet [120] framework. The model yields an accuracy of

99.77% on LFW Dataset.

3.7 Summary

This chapter include the details of five deep learning models i.e. FaceNET, VG-

GFace 2, SphereFace, CosFace and ArcFace models are used for evaluation used

for the evaluation. It also describe the training database, the network architecture
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and the loss function involved in the training of these models. The last three

models utilize different modalities of angular loss function to attain the state of

the art results on LFW benchmark database.



Chapter 4

Evaluation Datasets and Protocols

This chapter presents a details about the scenarios and the databases used to

evaluate the performance of the selected deep learning based FR models. The

scenarios selected are :

1. Aging Effect

2. Facial pose Effect

3. Resolution Effect

4. Cross spectral facial matching

5. Ethnicity Effect

4.1 Aging Effect

Aging has a noticeable influence on the automated face recognition process, in-

creasing the FAR and FRR consequently degrading the performance. These rates

might have a severe impact on operations in high-volume areas (e.g. airports), re-

sulting in security concerns and unanticipated delays. Understanding the impact

caused by aging on the performance of FR systems is critical, turning study on

52
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aging effects an interesting research topic. Face recognition is a traditional tech-

nique for authentication [121]. FR faces many challenges related to aging, which

have drawn the attention of researchers [122], [123]. The development of various

datasets and methodologies has aided in the study of ageing effects on automated

face recognition.

These developments have enabled algorithms to cope with the impacts of ageing on

the identification process while still improving overall performance [124]. Despite

all of the advancements over the years, several factors still continue to impact the

effectiveness and accuracy of the identification process as people age. A best face

recognition algorithm is the one which must performs good at facial images of the

corresponding individual captured at different ages. A performance evaluation of

the selected FR models was conducted over aging effect by utilizing two databases

.i.e AgeDB [125] and CALFW [126].

4.1.1 AgeDB

AgeDB [125] has 16,488 images of notable individuals from numerous fields of

life, including politicians, writers, and actors/actresses. Each image is labelled

along the information on the subject’s identity, age, and gender. There are 568

unique subjects. Each individual gets an average of 29 images. The minimum and

maximum ages are 1 and 101 year, respectively. Each subject has an average age

of 50.3 years.

Due to the rising interest in age estimation ’in-the-wild’ and the rise of new

databases, to address this issue in recent years there is no manual collection of

year-age information from the ’wild’ . To address this gap in the literature, the

authors provide the first manually gathered ’in-the-wild’ age database, named

AgeDB. AgeDB features images of a variety of subjects labeled with year-accurate

age labels.

Figure 4.1 depicts the scatter plot of Age distribution of all the samples present in

the AgeDB dataset. Where as Figure 4.2 shows various samples and their labels
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Figure 4.1: Scatter plot of Age distribution in AgeDB [125]

Figure 4.2: Sample images in AgeDB [125]

presents in the AgeDB dataset. The fact that AgeDB is gathered manually ensures

the correctness of the age labels in various ways:

1. AgeDB will be used to conduct age-invariant face verification studies i.e.,

Sensitivity of FR algorithm can be determined when the age difference be-

tween instances (images) of the same person rises. Due to the absence of

noise in the age labels, AgeDB enables the fair assessment of various face

recognition systems.

2. AgeDB can be utilised in "in-the-wild" age estimate studies. AgeDB may be

used as a benchmark database for such tasks due to its accurate age labels.
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3. AgeDB may be used in "in-the-wild" tests on face age progression, as it is a

manually gathered database with a wide range of ages for each individual.

This trait makes AgeDB extremely advantageous when it comes to training

models for age progression investigations.

In this research, AgeDB is used to conduct age-invariance studies of the selected

top of the line face recognition models.

4.1.1.1 Evaluation Protocol

For evaluation of different models, we followed the same protocol as suggested by

authors to report the accuracy.

The authors divided AgeDB into ten folds for each protocol, with each fold con-

taining 300 intraclass and 300 intraclass pairs. The primary difference between the

protocols is that each protocol has a specific, pre-defined age difference between

the faces of each pair, i.e., 5, 10, 20, and 30 years. We are using the AgeDB-30

protocol because it contains age gaps of more than 30 years as seen in Figure 4.3

and is the most commonly reported and challenging one by AgeDB.

Figure 4.3: Image pairs with over 30 years of age gap in AgeDB [125]

As depicted in Figure 4.4 and Equation 4.1, after performing 10-fold cross valida-

tion, accuracy was computed after each fold and the average accuracy, is reported

in this case.

E =
1

K

K∑
i=1

Ei (4.1)
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Figure 4.4: N-fold cross validation topology

4.1.2 CALFW

CALFW [126] is another benchmark dataset to evaluate the face recognition mod-

els under aging effect. CALFW (Cross-age LFW) originates from the famous

LFW(Label faces in Wild) [65] Database which has been widely used as bench-

mark to study face verification. It is created by using images taken as part of the

Berkeley Faces in the Wild project [127], [128]. The images in the project were

gathered from Yahoo News between 2002 and 2003 and were taken in natural set-

tings with a variety of settings, poses, expressions, and lighting. These images were

popular for research purposes, but due to the presence of more than 10% noisy

labels and a high number of duplicates, they could not be used as a benchmark.

As a result, the dataset was cleaned manually,new protocols were developed, and

released the dataset termed as ’Labeled Faces in the Wild’. The LFW database

contains 13,233 face images of 5,749 individuals and two views of LFW for ex-

periments: view 1 for development purposes and view 2 for fair comparison. For

cross validation in view 2, the dataset was divided into ten non-repeating subsets

of image pairs. Each subset comprises 300 pairs of positive images (images of

the same person) and 300 pairs of negative images (images from different people).
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When the database is utilised exclusively for testing, all pairings (3000 positive

and 3000 negative) are included to acquire performance results.

The new database, called Cross-Age LFW (CALFW), was compiled through crowd-

sourcing attempts to collect images of people wearing LFW with the largest age

gap possible on the Internet, in order to supplement the original LFW with age

intra-class diversity. Following the search, an age estimation technique [129] is

used to determine the ages of all selected images, and the pairs with the highest

age disparities are chosen as positive pairs in View 2. The comparison of the same

individual in LFW and CALFW is given in Figure 4.5, and as can be seen from

the image, the ageing process is more visible in CALFW.

Figure 4.5: Image pairs with significant age gap in LFW and CALFW [126]

Figure 4.6 shows the improved age distribution in CALFW in comparison with

LFW Database.

4.1.2.1 Evaluation Protocol

CALFW dataset was partitioned into ten distinct folds using the same identities

as the LFW ten folds.

The CALFW dataset comprises 4,025 persons, each with two, three, or four im-

ages. To determine the age of each image, we utilise Dex [129], the winner of
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Figure 4.6: Image pairs with over 30 years of age gap in AgeDB [125]

the ChaLearn LAP 2015 [130] age estimation competition, and the names of the

images are as : name0001.jpg, name0002.jpg,

the number ”0001”, ”0002” reflects the rank of age estimation result. ”0001” is the

youngest image and ”0002” is the oldest image of a subject.

We utilized pairs_CALFW.txt from the testing section of CALFW, which con-

tains 10 sets of 300 matched and 300 mismatched pairs respectively. So 12,000

pairs in total, half of which are matched, the other half of which are mismatched.

We set thresholds range from 0 to 1, gap 0.001 for example, which produces 1,000

thresholds.

Calculated the distance d over all pairs. For a threshold t, if d ≤ t, pairs are

predicted as matched. Otherwise, pairs are predicted as mismatched.

For each threshold t: For each matched pair,

• If it is predicted as matched, TP+=1;

• If it is predicted as mismatched, FN+=1.

For each mismatched pair,

• If it is predicted as matched, FP+=1;



Evaluation Datasets and Protocols 59

• If it is predicted as mismatched, TN+=1.

Verification Accuracy is computed as Follows :

Accuracy =
TP + TN

TP + TN + FP + FN
(4.2)

4.2 Pose Variation

One of the key issues of the face recognition system is the distribution of different

facial poses. To match the profile face with the gallery face, frontal face recon-

struction is required [131]. This reconstruction is essential because a database

image with a frontal view and a non-frontal profile face might produce incorrect

results. Various ways described by researchers to transform the non-frontal face to

the frontal face may improve recognition accuracy [131], [132]. Researchers in the

suggested methodologies [133], [134] describing how pose variation significantly

impairs the algorithm’s performance. For analyzing the performance of models

described in Chapter 3 two benchmark datasets i.e CPLFW [126] and CFP-FP

[135] are used to evaluate the performance.

4.2.1 CPLFW

CPLFW [126] is a database derived from LFW benchmark database, by breaking

down two of its limitations factors. Firstly the authors look for images with a lot

of pose changes and use identities/labels to find positive matches.

Second, they choose negative pairs consisting of people of the same gender and race

i.e Identities that do not match vary exclusively in identity. CPLFW database was

created via crowd sourcing efforts. Figure 4.7 highlights the pose effect present in

CPLFW as compared to LFW dataset.

The following are the three motivations for the development of the CPLFW bench-

mark:
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1. Creating a more challenging and unbiased database in order to perform a

real world evaluation of FR algorithms so that their efficacy and efficiency

can be completely justified.

2. Fostering research on cross-position face verification in unconstrained sit-

uations while continuing extensive research on LFW with a more realistic

view on pose intra-class variance. The CPLFW challenge promotes pose

difference to increase intra-class variation. Furthermore, negative pairs are

purposefully chosen to prevent opposite genders or races. CPLFW takes

into account both the substantial intra-class variance and the low inter-class

variance at the same time.

3. Keeping the data size constant, the face verification protocol that offers

a ’same/different’ benchmark, and the same identities in LFW, so that

CPLFW can be simply applied to assess the performance of face verifica-

tion.

Figure 4.7: Image pairs with different poses in LFW [65] and CPLFW [126]

The pose difference represented as yaw angle of facial images can be seen more

evenly distributed in CPLFW, according to the Figure 4.8. Furthermore, the

difference of facial poses among the majority of positive image pairs in LFW is
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Figure 4.8: Pose variation among images present in CPLFW [126]

less than 40 degrees, but the difference is higher in CPLFW’s positive image pairs.

It confirms that there is intra-class variance in the dataset.

Figure 4.9: Comparison of pose of positive pairs of LFW and CPLFW dataset
[126]

In comparison to LFW, CPLFW contains positive pairs that represent obvious

pose differences, as shown in Figure 4.9. Although there are no changes in gender

or race present among negative pairs in CPLFW, this greatly reduces the impact

of attribute differences between positive and negative pairs.
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4.2.1.1 Evaluation Protocol

Evaluation protocol used to evaluate the face recognition models are same as

defined by authors. Using the same identities found in the 10 folds of the LFW,

the CPLFW dataset has also been divided into 10 folds. The dataset includes two

or three images per person with the following naming convention : name0001.jpg,

name0002.jpg

Authors have selected the positive pairs randomly. They select negative pairs

with people who have the same gender and race as each other, so that there are

no attribute differences between positive pairs (people who share the same gender

and race) and negative pairs (people who are randomly matched by gender and

race). The accuracy is computed in the same fashion as explained in Section 4.1.2.

4.2.2 CFP-FP

A data set for CFP-FP (Celebrities in Frontal-Profile) [135] in the Wild contains

unconstrained images of celebrities in both frontal and profile (side) poses. Based

on face verification, the experimental protocol was developed. By selecting a

fixed number of frontal and profile images of each subject, the authors were able

to obtain a balanced dataset. This data set is made available open-source for

research and development. Images of 500 people are included, with 10 frontal and

4 profile shots. They define "frontal" as an image that shows both sides of the

face almost equally on the image, and "profile" as an image that shows one eye

clearly but less than half the other eye.

Essentially, these definitions mean: There must be less than a 10 degree variation in

yaw for the ’frontal’ and greater than a 60 degree variation for the ’profile’. Similar

to that of LFW, There are 10 splits within the authors’ proposed evaluation files,

each containing 350 same pairs and 350 different pairs to verify the faces. The

suggested protocols are tested on Frontal-Frontal and Frontal-Profile matching.

First row of Figure 4.10 shows the frontal images from the database whereas the

second row represents the respective profile images.
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Figure 4.10: Frontal and Profile Images from CFP-FP database [135]

4.2.2.1 Evaluation Protocol

In order to evaluate the models under poses variations, most challenging part of

CFP dataset, i.e CFP-FP (Frontal to Profile) matching was performed.

Figure 4.11 shows the database structure of CFP database, Inside there are two

main folders as Data and Protocol, The Data folder contains Images sub-folder

which contains Individualsidentitynumber folders and frontal and profile sub

folders with 10 and 4 images of each 500 individuals respectively. Data folder also

contains folder named as Fiducial which contains Frontal and Profile fiducials (30

points) of each individual. list_names.txt contains the names of 500 individuals

in order.

Protocol folder contains pair information for Frontal-Frontal Verification and Frontal-

Profile Verification. It also contains splits folders for all 10 fold verification for

Frontal-Frontal. same.txt contains 350 same pairs and diff.txt retains 350 differ-

ent pairs, similar is the case with Frontal to Profile matching folder termed as FP

in Figure 4.11. Pair_list_F.txt & Pair_list_P.txt contains 5000 Frontal and

2000 Profile images with numbers ranging from 1 - 5000 for Frontal and 1 - 2000

for Profiles.

The associated location of images for this number can be obtained using these .txt

files. For this research the most challenging scenario CFP-FP (frontal to profile)

matching was done using standard 10-folds cross validation data provided by the

authors to report the accuracy.
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Figure 4.11: Database structure of CFP-FP database

4.3 Resolution Effect

As the number of surveillance cameras rises (particularly in metropolitan areas),

the footage they acquire will need to be automatically processed. However, such

videos are typically shot with significant standoffs, challenging lighting conditions,

and a variety of angles of view. Faces in these images are often small, thus the

resolution is limited, as seen in Figure 4.12. For a face recognition scenario it is

difficult to compare the low-resolution test image to the high-resolution gallery

image.

Although there is no widely accepted single criterion for classifying a face in an

image as low-resolution, multiple studies have found that face images with a tight

bounding box less than 32×32 pixels provide considerable accuracy problems to

face recognition systems in both human and computer vision.

In order to evaluate the performance of selected face recognition algorithms, SCface

dataset is used.
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Figure 4.12: Low resolution face in a Surveillance video [136]

4.3.1 SCface

The SCface [136] database was created primarily to test FR algorithms in realistic

scenarios. One might readily conceive a scenario in which a person should be recog-

nised by comparing to a low quality still photo obtained from a video surveillance

system with high quality mugshot images in such a configuration. The authors

opted to employ commercially available surveillance cameras of varied quality to

construct a realistic arrangement. Images in other currently accessible databases

are typically captured with the same camera and without the use of proper, com-

mercially available surveillance equipment. IR images were also added in the

database since two of the surveillance cameras capture both visible spectrum and

IR night vision photos.

The video communications laboratory at the Faculty of Electrical Engineering

and Computing at the University of Zagreb, Croatia, was used to capture facial

images. Six surveillance cameras, a professional digital video surveillance recorder,

a professional high-quality picture camera, and a computer comprised the capture

equipment. The authors utilised a high-quality photo camera to capture the mug

shot images.

Then they employed five distinct (commercially accessible) surveillance camera

types to get surveillance camera images, and a separate surveillance camera was

used to capture IR mug photos. The only source of illumination while capturing
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these images was the natural light that entered via one of the windows. Two (of

five) surveillance cameras were also capable of recording in the infrared night vi-

sion mode. The sixth camera was placed in a different, darkened room specifically

for the purpose of collecting infrared mug pictures. The high-quality camera used

to capture visible light mug photos was mounted identical to the infrared camera,

but in a separate room with regular indoor lighting and a sufficient flash. Mug

shot imaging circumstances are identical to those used in law enforcement or Im-

agery of passports and other personal identification documents . All 6 cameras

(5 surveillance and 1 infrared mug shot) were attached to a professional digital

video surveillance recorder that continuously recorded all six video streams on an

internal hard drive.

Cam1, cam2, cam3, cam4, and cam5 are the security cameras. cam1 and cam5 are

also equipped with infrared night vision capabilities. The authors title their images

taken in IR night vision mode as cam6 (basically cam1 when night vision is on)

and cam7 (basically cam5 when night vision is on). Cam8 was the name given to

the camera used to take infrared mug photographs. All cameras (surveillance and

photo) were placed and fixed in identical places and remained stationary during

the capture procedure.

The following method was followed by all participants in this experiment. They

were required to walk in front of security cameras in the dark first, and then

under uncontrolled interior illumination. They were required to halt at three pre-

marked locations along their trek in front of the cameras. This method resulted

in the capture of 21 photos per person (cam1-7 at distances of 4.20, 2.60 and 1.00

meters). Following that, subjects were photographed at close range in controlled

settings using a digital photographer’s camera (HR images with standard lightning

conditions). These collections of photos depicts each face in nine distinct angles,

going from left to right profile in equal increments of 22.5 degrees. To ensure that

each subject’s vision was comparable, numbered markers were placed as anchors.

As a consequence, each individual has nine photos with perspectives ranging from

-90 to +90 degrees, as well as another mug shot at 0 degrees. Finally, individuals

entered a dark room equipped with a high-quality infrared night vision security
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camera capable of obtaining IR mug pictures at close range. This results in a total

of 32 photos per subject in the database. Following the capture method, the faces

of the subjects were retrieved from the acquired photos. The following names were

assigned to the captured images:

• Surveillance cameras (cam 1-7): subjectID_camNum_distancelabel.jpg.

• IR frontal mug shot: subjectID_cams.jpg

• Visible light mug shot: subjectID_frontal.jpg

• Different pose images: subjectID_angleLabel.jpg

Thus, each image in the database was assigned a unique name that included in-

formation on the subject’s unique identifier as well as the distance and imaging

conditions at which the image was captured. The distance labels 1, 2, and 3 denote

4.20, 2.60, and 1.00 metres, respectively. The filename 001_cam1_1.jpg for ex-

ample, indicates that this image represents subject 001 as acquired by surveillance

camera 1 at a distance of 4.20 metres.

Figure 4.13: Sample Images from SCface Database [136]

Figure 4.13 depicts sample images from the database captured at different dis-

tances, here first column contains the high resolution mugshot images, second,

third and fourth column represents the images at d1, d2 and d3, which is 4.20,

2.60 and 1.00 meters respectively.
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4.3.1.1 Evaluation Protocol

SCface defines face identification with unpaired High and Low resolution faces. It

mimics the real-world surveillance watch-list problem, where the gallery contains

HR faces and the probe consists of low resolution faces captured from surveillance

cameras. Original study of SCface proposed protocol for face recognition was

used to test the performance and reporting the accuracy, out of 130 subjects

50 subjects are used for training (fine-tuning) and the remaining 80 for testing.

The recognition accuracy at each distance i.e d1, d2, d3 and average accuracy is

reported in this study.

4.4 Cross Spectral Matching

Matching active infrared (IR) facial probe images to a visible light face gallery

images is a novel and difficult challenge. This scenario is prompted by a variety

of real-world surveillance tasks, such as facial recognnition at night or in poor

atmospheric circumstances. Cross-spectral face recognition (CFR) is used to iden-

tify individuals when comparative face images are captured using multiple sensing

modalities, such as infrared vs. visible. While CFR is fundamentally more difficult

than classical face recognition because to the large diversity in facial appearance

caused by a modality gap, it outperforms classical face recognition in scenarios

with low or difficult lighting, as well as in the presence of presentation challenges.

CFR is more difficult to do than regular FR. This is mainly due to the three

factors listed. Firstly, there is significant intra-spectral variance, in which face

samples from the same individual might impart greater appearance diversity than

face samples from different people within the same modality as seen in Figure

4.14. Second, the modality gap is a source of concern, as here is where appear-

ance variation occurs. This may result in a decrease in the performance of face

comparisons. Finally, a constraint has been the scarcity of cross-modality face

picture pair training samples. It is noticed that recent breakthroughs in convolu-

tional neural networks (CNNs) and generative adversarial networks (GANs) have

enabled significant improvements in CFR [137], [138].
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Figure 4.14: Heterogeneity among faces of same individual across different
modalities [139]

Infrared (IR) spectral bands that have been used in Cross spectral face recognition,

can be seen in Figure 4.15. Wolff et al. [140], Buddharaju et al. [141], Kong et

al. [142], Bhowmik et al. [143], and Bourlai and Hornak [144] defined infrared

light as an invisible, heat-associated energy that may be perceived when radiation

or heat is reflected or emitted from an object. Unlike UV rays [145], infrared

waves pass through the skin without causing harm. We notice that IR sensors

can detect either the infrared light’s face-reflection or the heat face-emission from

subcutaneous superficial blood vessels. The infrared spectrum has been primarily

used in spectroscopy [146], thermography [147], and astronomy [148].

Figure 4.15: Heterogeneity among faces of same individual across different
modalities [149]

According to ISO-20473:2007, infrared bands are described as near-infrared (NIR)

between 0.78µm–3µm, mid-infrared (MIR) between 3µm–50µm, and far-infrared

(FIR) between 50µm–1000µm. IR-A (0.7µm – 1.4µm), IR-B (1.4µm – 3µm), and

IR-C (3µm – 1000µm).

Several database have been developed to assist the research in cross spectral match-

ing, we are using TUFTS database to evaluate the performance of the selected deep

learning models.
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4.4.1 TUFTS Database

There are approximately 10,000 images in the Tufts [139] Face Database (74 women

and 38 men, aged 4 to 70 years old with more than 15 nationalities) containing dif-

ferent image modalities, such as visible, near-infrared, thermal, LYTRO, recorded

video, and 3D images.

Due to the widespread use of different sensors in everyday life, cross-modality

face recognition is an emerging topic. ML algorithms that are data hungry, face

recognition systems rely heavily on existing databases for evaluation and training

examples. Unfortunately, there is currently no publicly accessible face database

that contains more than two modalities for a given subject. Several images have

been acquired for the Tufts Face Database, including photographs, thermal images,

near infrared images, recorded video, a computerized facial sketch, and three-

dimensional images of the volunteers faces. A protocol was obtained from the

Institutional Review Board, and images were collected from students, staff, faculty,

and their families at Tufts University.

In order to acquire images participants were seated in close proximity to the cam-

era in front of a blue background. To achieve the optimal image center, each

camera was mounted on a tripod and its height adjusted manually. In the acquisi-

tion process, the distance between the camera and the participant was controlled

carefully. Diffuse lighting was used to ensure a constant lighting condition.

Figure 4.16 shows different image modalities among this database. Four cameras

were used to capture 3D images. The camera was moved at 9 equidistant positions

in order to form an approximate semicircle around each participant while they were

instructed to look at a fixed view-point. Structure-from-motion algorithms were

used to reconstruct the 3D models.

Software FACES 4.0 [150] was used for creating computerized facial sketches, one

of the most widely used software packages among law enforcement agencies, the

FBI, and the US Military. With the software, researchers can select candidates

from the database based on their observations or memories.
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Figure 4.16: Images from different modalities present in TUFTS database
[139]

FLIR Vue Pro cameras were used to capture the IR images. Nine cameras were

placed at nine equidistant positions in a semi-circle around each participant and

the participants were instructed to focus on a fixed point. RGB images were

captured using a NIKON D3100 camera. Four night vision cameras were used to

capture near-infrared images. An 850nm Infrared 96 LED light system was used
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to maintain the lighting condition for NIR imaging.

4.4.1.1 Evaluation Protocol

In order to evaluate the performance of selected face recognition models, standard

watch list identification protocol was used to obtain the results. For both NIR and

Thermal images, only frontal images with neutral face expression were selected,

for each of the 112 individuals as a probe. RGB frontal images from the database

were used as a gallery set to perform the recognition test.

4.5 Ethnicity Effect

Several AI systems, including face recognition tools, are built around machine

learning algorithms that are trained on labeled data. In a recent study, it was

found that algorithms trained with biased data can not discriminate better [151],

[152]. The stability of algorithm performance for populations of faces where de-

mographics vary is critical to predicting the accuracy of face recognition when

varying venue demographics are present.

In a study by [151] they demonstrated how Word2Vec, a popular embedding space

with many applications, encodes societal gender biases. An analogy generator was

trained using Word2Vec to fill in missing words in analogies. Using Word2Vec as

the embedding, biases are likely to propagate throughout the system. There are

no databases based on ethnicity that can be used to generalize research on the

effect of ethnicity on gender classification accuracy.

Nearly 117 million Americans have been identified in federal law enforcement face

recognition databases. African-Americans are more likely to be subjected to face

recognition searches than individuals of other races. [153] Based on an analysis

of 100 police departments, it was found that African-Americans have a higher

likelihood of being stopped by law enforcement and subjected to face recognition

searches than individuals of other races. Civil liberties are threatened by false



Evaluation Datasets and Protocols 73

positives and unwarranted searches. There has been considerable evidence that

some face recognition systems misidentify people of color, women, and young peo-

ple more often than average [154]. To protect citizens’ rights and hold vendors

and law enforcement accountable, phenotypic and demographic accuracy of these

systems as well as their use must be monitored.

Earlier this year NIST, a physical sciences laboratory and non-regulatory agency

of the US, also publishes a report [155] analyzing the efficency and accuracy, across

racial groups, of 189 various FR algorithms developed and proposed by 99 differ-

entS companies, including Microsoft, Intel, and other big names in in technology

and surveillance industry. It has also been found that many of these algorithms

misidentify a black or east asian face at the rate between 10 and 100 times greater

than a white face. Also, misidentifications of American Indian faces tend to be the

most frequent. Black women were less likely than any other demographic to be

correctly identified by most algorithms. There are three distinct ways that race can

influence the development and performance efficiency of FR technology. Racially

disparate results are primarily due to non-diverse training images, human bias,

and the availability of high-quality data. In general, lighter skin tones dominate

the distribution of faces used to train the algorithm i.e. 83.5% of the faces in the

LFW (a benchmark open-source database) dataset are white. Older algorithms

used for FR have human selection of facial features, along with poor image quality

that predominantly affects darker skin tones. Together, these problems cause the

FR algorithms to perform unjust across races. Dark skin tones, in particular, tend

to perform badly.

Older face recognition algorithms, which relies on the manual input of humans

in the selection of facial features to analyze, may also be impacted by race. In

addition to the appearance of human eye and nose to chin distance, colour and

length of the eyebrow are possible qualities to consider. A person’s choice of

features is one of the factors under direct influence of his/her own race, as the

research has shown that the race influences recognition of facial features. Among

algorithms developed in China, Japan, and South Korea, Asian faces have shown

better results than the Caucasian faces, while the opposite was true for algorithms
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developed in the United States, France, and Germany. This factor, together with

the racial composition of the training images, may explain why, in a study by

NIST, Asian faces made greater progress than Caucasian faces.

In order to evaluate the performance of our selected face recognition models, we

selected the MIVIA Vmer Database with race labels to evaluate the performance.

4.5.1 VMER (VGG-Face2 Mivia Ethnicity Recognition)

In the VMER [156] dataset, images have been taken from the original VGGFace2,

which includes more than 3.3 million face images, with an average of 362 images per

subject (at least 87 images per subject). It also includes gender information, with

62% males and 38% females. The authors asked three individuals representing

different ethnicities to label each identity with their ethnicity among the four

identified, in order to avoid the other race effect. One African American, one

Caucasian Latino, and one Asian Indian, were asked to do this. The authors then

applied a majority voting rule to obtain the final annotations, and this allowed

us to classify 99% of the face images based on ethnicity; the remaining 1% were

sorted based on a tie-break rule by asking a fourth expert.

VMER’s final dataset consists of 3,309,742 images of 9129 identities. Training

and test sets are not subject overlapping i.e images of a subject provided in the

training set is not available in the test set . Face analysis relies heavily on this

separation in order to assess a neural network’s generalizability. The labels of the

database are the following:

1. African American

2. East Asian

3. Caucasian Latin

4. Asian Indian
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AA (African American): members of this ethnicity group usually originate from

Africa, North America or South America and are oftenly bears darkish skin with

the lips and nose region being more prominent.

East Asian (EA): people of this group are either Chinese or have ancestry in East

and South East Asia. Their skin tone is lighter, and their nose is relatively small,

Besides their almond-shaped eyes, their most distinguishing characteristic is the

inclination between their lateral and medial canthi, giving them the appearance

of being narrow.

Figure 4.17: 4 different ethnic groups present in VMER Database [156]

Caucasians Latins (CL): As such, people of this ethnicity are derived from Europe,

South America, Western Asia, and North Africa. They have a pale or tanned skin

tone, a medium nose and lips, and horizontally aligned eyes.

Asian Indian (AI): this ethnicity group consists of people of Indian, South Asian,

and Pacific Island descent. Although they share some characteristics with EAs and

CLs, there are some slight differences that allow us to differentiate them. They

possess a bit darker complexion of skin tones and more prominent facial features
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compared to East Asians and Caucasian Latins. Figure 4.17 depicts a selection of

face images from the four ethnicity groups

4.5.1.1 Evaluation Protocol

As the VMER database is build upon VGGFace 2 database, so in order to evaluate

our pre-trained models the test set of the VGGFace 2 is used, which contains

images from 500 individuals, All of these folders are manually sorted as by the

available four ethnicity labels. Then in order to implement the watchlist (1:N)

searching and verification protocol, the gallery images (one per identity) were

selected among the available data, the rest of the image were treated as a probe

set. The gallery image is manually selected based upon neutral expression, no pose

variation (frontal images), even lightning conditions and images captured with no

occlusion.

4.6 Summary

This chapter include the databases details and the evaluation protocol associated

with each database in order to evaluate the model. Two benchmark databases i.e

AgeDB and CALFW are used for checking the performance of model under Aging

effect, CPLFW and CFP-FP database is used to evaluate the models under pose

variation, SCface database is used to mock the scenario of real life surveillance face

recognition application in which low resolution probe images are matched with high

resolution gallery images. TUFTS database is used to evaluate the cross-spectral

performance of face recognition algorithms and atlast VMER database is used to

evaluate the models performance under Ethnicity change.



Chapter 5

Results and Evaluation

This chapter will discuss the results of face verification and recognition of the

models under test and benchmark databases used to evaluate the performance.

5.1 Aging

For Deep Face models to be tested under age variations two popular benchmark

databases were used for the evaluation. The details and the prorocol for each

of these databases was discussed in Chapter 4. Table 5.1 Shows the Verifica-

tion results of face matching on AgeDB-30 and CALFW, ArcFace with the ac-

curacy of 98.08% and 95.87% leads the table for both the databases. However

VGGFace2 performs the worst for AgeDB-30 achieving the accuracy of 85.11%,

whereas FaceNET model achieves 83.41%, worst for CALFW database. CosFace

and SphereFace shows the average performance for both the databases obtaining

97.30% and 97.91% for AgeDB-30 and 90.30% and 94.97% for CALFW. All of

these results reflects the backbone architecture, the training database and the loss

function used for the training of models. Here ArcFace published in 2021 performs

the best where the database used is more comprehensive and largescale, as well

as the angular loss function utilizes for the training provides the large separation

margin between classes.

77



Results and Evaluation 78

Table 5.1: Verification % of FR Models based on Age datasets

FR Models AgeDB-30 CALFW
FaceNet 98.05% 89.41%

VGGFace2 85.11% 90.57%
SphereFace 97.30% 90.30%
CosFace 97.91% 94.97%
ArcFace 98.08% 95.87%

The bar graph in Figure 5.1 depict the trend among the verification accuracy of

all the selected models.

Figure 5.1: Face Verification% of selected FR models on AgeDB-30 and
CALFW

5.2 Pose

Facial pose variation is one of the most important challenge among different factors

that directly effects the performance of FR system, In order to evaluate the perfor-

mance of selected pre-trained models CPLFW and CFP-FP databases were used,

which are considered as benchmark while reporting the accuracy of models, under

pose variation. Here Table 5.2 shows the Face Verification accuracy of different

models, Here ArcFace achieves the highest accuracy i.e. 92.08% and 94.51% for

both CFP-FP and CPLFW, In case of CFP-FP only frontal and profile photos are

matched with large pose difference. Whereas SphereFace unexpectedly performs
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worse among all of the models selected with accuracy of 77.48% on CPLFW and

FaceNET achieves 84.55%, the lowest on CFP-FP. The verification protocols and

the details of datasets was already discussed in Chapter 4.

Table 5.2: Verification % of FR Models on Pose datasets

FR Models CPLFW CFP-FP
FaceNet 81.13% 84.55%

VGGFace2 84.01% 89.48%
SphereFace 77.48% 93.71%
CosFace 88.88% 94.40%
ArcFace 92.08% 94.51%

ArcFace being trained with the modified loss fuction and ,MS1M comprehensive

database with ResNET-100 architecture backbone outclass the rest of the mod-

els even when two images to be compared have huge pose difference, The trend

among the accuracy of different models can be seen in Figure 5.2. VGGFace 2

model trained with VGGFace 2 comprehensive database shows the below average

performance as compared to rest of the models achieving 84.01% and 89.48% ac-

curacy on CPLFW and CFP-FP databases. The inconsistency of the verification

accuracy on CPLFW and CFP-FP is seen clearly in the bar graph of Figure 5.2.

SphereFace seems to be have a large variance and ARCFace is the one with less

variace among the accuracy.

5.3 Resolution effect

Like other variations discussed earlier, the effect of resolution of facial image on the

performance of face recognition systems is also very crucial specifically in surveil-

lance scenarios, as the discriminative facial features and landmarks are much more

evident in high resolution as compared to low resolution image. SCFace, a popular

benchmarking database for low resolution face recognition is used to evaluate the

performance of the selected FR models, The details about the database and the

evaluation protocol was discussed in Chapter 4, here the results are reported in

terms of Rank-1 identification accuracy, at the set of images captured at three dif-

ferent distances d1, d2 and d3 which are 4.20, 2.60 and 1.00 meters, respectively.
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Figure 5.2: Trend of the Verification % on CPLFW and CFP-FP Database

Here again ARCFace leads the table by achieving the accuracy of 67.2% at d1, the

most challenging one and 93.2% and 98.0% at d2 and d3 sequentially.

Table 5.3: Rank - 1 Identification % of FR Models on SCFace dataset

FR Models d1 d2 d3 Average(%)
FaceNet 25.7% 24.8% 31.7% 27.4%

VGGFace2 48.0% 72.4% 76.3% 65.6%
SphereFace 61.5 % 79.0% 93.8% 78.1%
CosFace 63.3% 81.1% 94.3% 79.5%
ArcFace 67.2% 93.2% 98.0% 86.1%

FaceNET shows the worst performance, although it is trained using Triplet loss

and large database, but that seems to be unhelpful when the resolution degrades.

It achieves only 25.7% at d1 and its best 31.7% at d3. The last column of Table

5.3 shows the Average Identification accuracy at Rank-1, just to have a overall

perspective of the performance. VGGFace2 shows 48.0% of accuracy at d1. Figure

5.3 depicts the trend among the accuracy of the selected models. Note that the

models used for the evaluation are all trained on High resolution images, evaluating

these models on low resolution images, degrade the performance as seen in the bar

plot.



Results and Evaluation 81

Super-resolution techniques are often used to convert low-resolution images into

high-resolution ones so that the model trained on high-resolution images can be

applied directly. In spite of super-resolution, the details are predicted and dis-

criminative features are sometimes diminished, so classification models may not

improve their ability to discriminate between enlarged images. Some recently de-

veloped techniques involving knowledge distillation for the training of models to

recognize the low resolution images have shown promising results.

Figure 5.3: Rank-1 Identification (%) on SCface Database

5.4 Cross Spectral Recognition

The results of Cross Spectral Face Recognition as well as the averaging tech-

nique developed for the improvement of recognition will be discussed with detail

in Chapter 6.

5.5 Ethnicity Effect

Face recognition technology has recently increased in availability, capability, and

use, but there have also been statements that possible demographic differences
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may cause accuracy variations and bias. Research conducted by researchers at

both Microsoft Research and the Massachusetts Institute of Technology (MIT)

[157], as well as the US National Institute of Standards and Technology (NIST)

[158], has uncovered persistent inaccuracies in algorithms for detecting and/or

identifying faces of people of color as recently as 2018 and 2019.

A MIT/Microsoft study found that algorithms were less accurate for women than

for men, with the biggest errors affecting women with dark skin, up to 35 percent.

At least two major challenges have been highlighted. Identifying individuals across

racial, ethnic, gender, and age groups requires algorithms with high comparative

accuracy and integrating these algorithms into real-world systems such as those

in law enforcement or government surveillance is a critical task.

So, in order to evaluate and probe the potential demographic bias in FR algo-

rithms, we have performed the Identification test using VMER Database.

This contains individuals from four different races including African American,

East Asian, Caucasian Latin and Asian Indian. The Identification accuracy of

these model for the mentioned races is obtained and presented in Table 5.4. Further

details about dataset and the evaluation protocol was already explained in Section

4.5.1

Table 5.4: Rank-1 Identification % of FR Models on VMER Database

FR Models African American East Asian Caucasian Latin Asian Indian
FaceNet 87.41% 86.58 % 88.41% 85.11%

VGGFace2 89.29% 87.56% 90.52% 82.65%
SphereFace 88.55% 88.14% 91.91% 89.41%
CosFace 88.31% 89.15% 91.00% 91.74%
ArcFace 92.57% 91.87 % 95.14% 93.75%

It can be seen that generally all of the FR models have been performing good for

the Caucasian Latin type of faces. However for the African American class all of

the models are performing under average. ArcFace model can be seen achieving

the highest accuracy of 95.14% for the Caucasian Latin class. The performance of

VGGFace2 is inconsistent across all the available classes. It also yields the lowest
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accuracy of 82.65% across all of the models and classes. The trend among the

accuracy of different models can be seen in Figure 5.4

Figure 5.4: Rank-1 Identification (%) on VMER Database

5.6 Summary

This Chapter discuss the results and findings of the experiments done to evalute

the performance under all the five scenarios. The ArcFace model outperforms all

of the others. Other models, such as SphereFace and CosFace, also performed

well.



Chapter 6

An Improved Approach for Cross

Spectral Matching

6.1 Introduction

Identifying faces in the real world poses a challenge because of illumination vari-

ation. It is possible to acquire high-quality images in low-light conditions or com-

plete darkness by using Near Infrared (NIR) or Infrared imaging. The technology

has thus been widely adopted in applications like mobile devices, video surveillance

and user authentication. Many applications, such as online registration and pre-

enrollment using passports or government ID cards, require that face templates

be enrolled on the basis of visible (VIS) images. Thus, NIR to VIS face matching

has drawn much attention in machine learning and computer vision. Further-

more, it has been the most studied research topic in the field of heterogeneous face

recognition (HFR), which is an image matching procedure over multiple spectral

(or sensing) domains that contrasts with conventional VIS face recognition for

homogeneous conditions.

Currently, for the purpose of deep HFR, convolutional neural networks (CNNs)

training on web-scale VIS face datasets and tuning them on NIR-VIS datasets are

commonly applied because they are time and cost-effective when obtaining large-

scale pair-wised face images from multiple domains [159], [160]. In this work we are

84



An Improved Approach for Cross Spectral Matching 85

about to evaluate the performance of deep face models trained on High resolution

visible images and test them for thermal and near infrared (NIR) images. After

direct matching, we performed the negative thermal image matching and then also

the average score of the predictions of models are used to compute the accuracy,

which has shown the increase in identification accuracy.

6.2 Evaluation Methodology

For this task TUFTS database is used, as it contains both Thermal and NIR

images, detail about the database and the evaluation protocol was discussed brielfy

in Chapter 4. Firstly, The faces were detected and pre-processed, and all images

were cropped to fit the input sizes of the respective models.

Figure 6.1: Depiction of Proposed Evaluation Methodology

Input image size for ArcFace and CosFace is 112x112, SphereFace is 112x96, VG-

GFace2 is 224x224, and FaceNet is 160x160. Initially MTCNN was used to detect

the faces and perform the alignment, but it only works with Visible Gallery im-

ages and Near Infrared Images, for pure thermal images it was unable to detect
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the faces in most cases, However different thresholds were also tuned of MTCNN,

but it didnot helped either. So, RetinaFace algorithm was used to detect faces in

case of thermal probe images which performed as per the expectaition and remains

successful in detecting all the faces.

FR models extract the features from detected and aligned images and output

embedding vectors corresponding to each face, which is essentially an identity code

for each face. The embedding vectors are computed both for the RGB images from

the gallery as well as for the thermal ones from the probe. Here, we computed

Figure 6.2: (a) RGB Gallery Images , (b) Corresponding Thermal Image, (c)
Corresponding Thermal Negative Image

accuracies three different ways as depicted in Figure 6.1 and presented the results:

1. The Euclidean distance between the RGB gallery embedding and Thermal

(IR) gallery embedding is computed.

2. Calculating the Euclidean distance between the RGB gallery embeddings

and the Thermal (IR) Negative embeddings of the RGB gallery.

3. Calculation of the Euclidean distance between the RGB gallery and the

thermal (average) image. When both the positive thermal negative thermal
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images were input, the average score of embeddings was computed as the

average of the probabilities at the output of the models.

We have also reported the results of direct cross spectral matching for Near Infrared

(NIR) Images.

Rank-1 accuracy was reported for NIR whereas Rank-1 and Rank-2 accuracy was

reported for Thermal images matching using standard watchlist identification pro-

tocol.

6.3 Results and discussions

Table ?? shows the results of cross spectral face recognition. ArcFace appears to

fare better than the others, as the training data used is vast and comprehensive, yet

the performance of the other models is not overly poor either, as we are performing

the recognition task on the models with input images from two different spectral

ranges, i.e. as shown in Figure 6.2. RGB gallery and Thermal probe images.

Figure 6.3: Trend of FR Accuracy % in Cross Spectral Matching

As seen in the Table 6.1, Direct cross spectral matching results in the low values of

accuracy, Here ArcFace achieves the best accuracy of 28.15% among 113 subjects,
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Table 6.1: Identification Accuracy % of FR Models (Direct CS Matching)

FR Models

Face Recognition Accuracy %
Thermal (IR)

Images
Thermal

Negative Images
Average of
Predictions

Rank-I Rank-II Rank-I Rank-II Rank-I Rank-II
ArcFace 28.15% 38.26% 17.00% 29.00% 35.77% 46.77%
CosFace 25.11% 36.11% 16.45% 28.56% 33.95% 45.44%

SphereFace 24.49% 35.52% 15.85% 27.77% 32.75% 44.26%
VGGFace2 23.31% 34.48% 14.67% 26.97% 31.54% 43.82%
FaceNet 23.44% 33.58% 12.23% 24.45% 29.56% 41.56%

as the model is trained on RGB high resolution images, whereas when the Thermal

negative images are used as a probe images and are compared with the RGB

mugshot image, the results are more disturbing as the accuracy drops to 17.00%

at Rank-1 for ArcFace compared with 28.15% with Thermal positive images.

The last two column of the Table 6.1 presents the Average score results, the average

of the score of both the thermal positive and thermal negative images are used for

the comparison with RGB gallery images. The averaging scheme worked very well

boosting the overall accuracy upto 7% at Rank-1 and 9% at Rank-2.

6.3.1 Results after Fine-Tuning

As demonstrated in Table 6.4, the results are promising. However, fine tuning and

transfer learning may be required to improve the results for a specific task, such

as recognising thermal faces. The advantages of transfer learning include reduced

training time and better performance compared to training from scratch. In order

to fine-tune the model, the weights of each model were frozen and an extra layer

was added at the end, which was then trained at a very low learning rate. As part

of our testing, we change the proportion of training and testing data after fine-

tuning and compare the RGB frontal images to the images from different angles,

as well as the frontal thermal images only.

A total of 1008 images of 112 individuals with 9 faces per subject were used for

fine tuning.
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Figure 6.4: Trend of Face Identification % (Rank-1 by matching both frontal
gallery and probe images)

The results of the fine tuning are shown in Tables with Figure 6.4 and 6.5. In

Figure and Table 6.4, we are showing results of an experiment in which different

proportions of training and testing datasets were used to compute accuracy.

According to this, ArcFace has the best recognition accuracy as at train:test::30:70,

its recognition accuracy was 62.33%, whereas it increased to 82.80% when training

and testing were split respectively 70% and 30%.

Figure 6.5: Trend of Face Identification % (Rank-1 by matching both frontal
gallery vs 9 probe images)
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We compare only faces from frontal thermal (IR) images with those from frontal

RGB images in Table 6.4. However, in Table and Figure 6.5, we compared the

frontal RGB maps with all nine different thermal (IR) probe maps of a single

subject as available in the dataset, and here the accuracy of ArcFace was just

50.20% at train:test::30:70, which was lesser than that of Table and Figure 6.4

with the same proportion of train/test split. Because of this, the model is able to

decide from a significant amount of data, i.e. the thermal images of the subject

from 9 different sides. As of train:test::70:30, the accuracy was 78.24%. Accuracy

of other models shows the same trend.

6.4 Summary

This Chapter presents the comparison of selected models under cross spectral face

recognition i.e in our case models are pre-trained on RGB images and they are

deployed for thermal face recognition scenario (RGB gallery and Thermal Probe

images). A unique approach has also been proposed in this section which helped

in boosting the accuracy of face recognition algorithms.



Chapter 7

Conclusion and Future Work

7.1 Conclusion

The field of FR has been explored with several algorithms in the past. The objec-

tive of this research was to evaluate the performance of selected five state of the

art face recognition algorithms. To evaluate the performance under five different

scenarios i.e Aging, Pose, Low Resolution, Cross Spectral Face Recognition and

Ethnicity and a total of seven databases are used to benchmark the performance.

ArcFace model published in 2021 have so far performed the best among other

models trained on large scale databases. This research has also proposed a new

technique for matching the cross spectral images using the deep learning models

trained on RGB images. The proposed technique for CFR has boosted the accu-

racy of all the models, without fine tuning on thermal database. The same trend

can be seen after fine tuning the models.

7.2 Future Work

In future this research can be extended in a way that more facial modalities like,

occlusion which is common in the surveillance applications, facial expressions and

illumination effect can be examined for all of these models. This will present

91
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a more comprehensive analysis about the performances of all the models. An

ensemble classifier can also be implemented based on the output of all of these

models so that a reliable face recognition system can be implemented.
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